Birla Institute of Technology & Science, Pilani First Semester 2022-2023 Mid-Semester Exam

Course No.	: ME G512	
Course Title	: Finite Element Methods	
Nature of Exam	: Open Book	
Weightage	: 25%	No. of Pages $= 2$
Duration	: 90 minutes	No. of Questions = 4
Date of Exam	: 03/11/2022	

Note to Students:

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.

2. Assumptions made if any, should be stated clearly at the beginning of your answer.

Q.1. The governing equation and boundary conditions for a physical phenomenon are as follows:

$$\frac{d^4y}{dx^4} - 2\frac{d^2y}{dx^2} + 4y = 0 \qquad 0 \le x \le 1;$$

- (a) Derive the weak form of the governing equation.
- (b) Identify primary and secondary variables

[3+3=6]Q.2. Consider the two-noded element with two degrees of freedom $\left(w, \frac{d^2w}{dx^2}\right)$ per node. Derive the interpolation functions for the element in terms of the coordinate 'x'.

$$\begin{array}{l} x = 0 \\ \bullet \\ w_1 \\ \phi_1 = \left\{ \frac{d^2 w}{dx^2} \right\}_{x=0} \end{array} \begin{array}{l} w_2 \\ \phi_2 = \left\{ \frac{d^2 w}{dx^2} \right\}_{x=1} \end{array}$$

Fig 2

[5]

Q.3. Consider the assembly of rigid and flexible members as shown in the Fig 2 below. The material properties and cross-sectional areas are as follows:
Steel members: E = 200GPa, A = 300 mm²
Aluminium member: E = 70 GPa, A = 600 mm²

Use 2-noded bar elements and

- (a) Determine global stiffness matrix
- (b) Determine the global load vector
- (c) Determine the displacement of the rigid member.
- (d) Determine the reaction forces at points A and C.

[3+2+3+2=10]

Q.4. Use minimum number of 2-noded beam/frame elements to discretize the structure and write the global load vectors for the structures shown below:

Fig 4a

Fig 4b

[2+2=4]