Birla Institute of Technology \& Science, Pilani
 First Semester 2022-2023
 Mid-Semester Exam

Course No.	$:$ ME G512	
Course Title	$:$ Finite Element Methods	
Nature of Exam	$:$ Open Book	
Weightage	$: 25 \%$	No. of Pages $=2$ Duration
Nate of Questions $=4$		
Date Exam	$: 03 / 11 / 2022$	

Note to Students:

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
2. Assumptions made if any, should be stated clearly at the beginning of your answer.
Q.1. The governing equation and boundary conditions for a physical phenomenon are as follows:

$$
\frac{d^{4} y}{d x^{4}}-2 \frac{d^{2} y}{d x^{2}}+4 y=0 \quad 0 \leq x \leq 1
$$

(a) Derive the weak form of the governing equation.
(b) Identify primary and secondary variables

$$
[3+3=6]
$$

Q.2. Consider the two-noded element with two degrees of freedom $\left(w, \frac{d^{2} w}{d x^{2}}\right)$ per node. Derive the interpolation functions for the element in terms of the coordinate ' x '.

Fig 2
Q.3. Consider the assembly of rigid and flexible members as shown in the Fig 2 below. The material properties and cross-sectional areas are as follows:
Steel members: $\mathrm{E}=200 \mathrm{GPa}, \mathrm{A}=300 \mathrm{~mm}^{2}$
Aluminium member: $\mathrm{E}=70 \mathrm{GPa}, \mathrm{A}=600 \mathrm{~mm}^{2}$
Use 2-noded bar elements and
(a) Determine global stiffness matrix
(b) Determine the global load vector
(c) Determine the displacement of the rigid member.
(d) Determine the reaction forces at points A and C .

$$
[3+2+3+2=10]
$$

Fig 3
Q.4. Use minimum number of 2-noded beam/frame elements to discretize the structure and write the global load vectors for the structures shown below:
(
Fig 4a

Fig 4b

