Birla Institute of Technology \& Science, Pilani
 First Semester 2022-2023
 Comprehensive Exam

Course No.	$:$ ME G512	
Course Title	$:$ Finite Element Methods	
Nature of Exam	$:$ Open Book	
Weightage	$: 35 \%$	No. of Pages $=2$
Duration	$: 3$ hours	No. of Questions $=5$
Date of Exam	$: 24 / 12 / 2022$	

Note to Students:

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
2. Assumptions made if any, should be stated clearly at the beginning of your answer.

Q1. A geometry under plane stress condition is disctretized using a 4-noded triangular element as shown in the
Figure 1 below.
(a) Derive interpolation functions for the 4 -noded element in terms of area coordinates (L_{1}, L_{2} and L_{3}).
(b) Verify that the derived interpolation functions in part (a) are partition of unity shape functions.
(c) Use first order approximation of geometry (subparametric formulation) and derive the expression for strain component $\left(\epsilon_{x x}\right)$ at node 4 of the triangular element in terms of global coordinates $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$ and displacements $\left(u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, u_{4}, v_{4}\right)$ at the nodes.

Q2. Consider the 4-noded rectangular element of Figure 2 with the nodal displacements given by:

$$
\begin{array}{lll}
u_{1}=0 & v_{1}=0 & u_{2}=0.005 \mathrm{~cm} \\
v_{2}=0.0025 \mathrm{~cm} & u_{3}=0.0025 \mathrm{~cm} & v_{3}=-0.0025 \mathrm{~cm} \\
u_{4}=0 & v_{4}=0 &
\end{array}
$$

Assume plane stress condition and use isoparametric formulation to determine the following at centroidal point \mathbf{P} with $x=2 \mathrm{~cm}, y=1 \mathrm{~cm}$:
(a) In-Plane displacements
(b) In-Plane Strains
(c) In-Plane Stresses

Figure 1

Figure 2

Q3. The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, $k_{\mathrm{A}}=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ and $k_{\mathrm{C}}=60 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, and known thickness, $L_{\mathrm{A}}=0.40 \mathrm{~m}$ and $L_{\mathrm{C}}=0.20 \mathrm{~m}$. The third material, B, which is sandwiched between materials A and C, is of known thickness, $L_{\mathrm{B}}=0.20 \mathrm{~m}$, but unknown thermal conductivity k_{B}. Under steady-state operating conditions, measurements reveal an outer surface temperature of $T_{s, o}=20^{\circ} \mathrm{C}$, an inner surface temperature of $T_{s, i}=600^{\circ} \mathrm{C}$, and an oven air temperature of $T_{\infty}=800^{\circ} \mathrm{C}$. The inside convection coefficient h is known to be $25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. Use minimum number of 2-noded finite elements and
(a) Determine the value of k_{B}
(b) Determine the temperature distribution in the wall

Q4. An isotropic clamped beam (Figure 3) of length length $2 L$ with Young's modulus (E), density (ρ), uniform area of cross-section $\left(\mathrm{A}_{\mathrm{b}}\right)$ and second moment of area $\left(I_{\mathrm{b}}\right)$ is supported at center by axial member of same material (E, ρ), length $L / 2$ with cross-section area $\left(\mathrm{A}_{\mathrm{a}}\right)$. Discretize the beam into two elements of length L and the axial member as a one element of length $L / 2$.
(a) Determine the global stiffness matrix
(b) Determine the global mass matrix
(c) Determine fundamental frequency of vibration of the system.

Figure 3

Q5. Consider the truss structure $(L=1 \mathrm{~m})$ as shown in the Figure $\mathbf{4}$ below. Use penalty method to impose the boundary conditions and determine displacement $\left(u_{s}\right)$ at Point 2.

Figure 4

