Birla Institute of Technology & Science, Pilani First Semester 2022-2023 Comprehensive Exam

Course No.	: ME G512	
Course Title	: Finite Element Methods	
Nature of Exam	: Open Book	
Weightage	: 35%	No. of Pages $= 2$
Duration	: 3 hours	No. of Questions = 5
Date of Exam	: 24/12/2022	

Note to Students:

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.

2. Assumptions made if any, should be stated clearly at the beginning of your answer.

- Q1. A geometry under plane stress condition is disctretized using a 4-noded triangular element as shown in the **Figure 1** below.
 - (a) Derive interpolation functions for the 4-noded element in terms of area coordinates $(L_1, L_2 \text{ and } L_3)$.
 - (b) Verify that the derived interpolation functions in part (a) are partition of unity shape functions.
 - (c) Use first order approximation of geometry (subparametric formulation) and derive the expression for strain component (ϵ_{xx}) at node 4 of the triangular element in terms of global coordinates $(x_1, y_1, x_2, y_2, x_3, y_3)$ and displacements $(u_1, v_1, u_2, v_2, u_3, v_3, u_4, v_4)$ at the nodes.

[7]

Q2. Consider the 4-noded rectangular element of Figure 2 with the nodal displacements given by:

$$u_1 = 0$$
 $v_1 = 0$ $u_2 = 0.005$ cm
 $v_2 = 0.0025$ cm $u_3 = 0.0025$ cm $v_3 = -0.0025$ cm
 $u_4 = 0$ $v_4 = 0$

Assume plane stress condition and use isoparametric formulation to determine the following at **centroidal** point P with x = 2 cm, y = 1 cm:

- (a) In-Plane displacements
- (b) In-Plane Strains
- (c) In-Plane Stresses

- Q3. The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, $k_A = 25 \text{ W/m} \cdot \text{K}$ and $k_C = 60 \text{ W/m} \cdot \text{K}$, and known thickness, $L_A = 0.40 \text{ m}$ and $L_C = 0.20 \text{ m}$. The third material, B, which is sandwiched between materials A and C, is of known thickness, $L_B = 0.20 \text{ m}$, but unknown thermal conductivity k_B . Under steady-state operating conditions, measurements reveal an outer surface temperature of $T_{s,o} = 20^{\circ}\text{C}$, an inner surface temperature of $T_{s,i} = 600^{\circ}\text{C}$, and an oven air temperature of $T_{\infty} = 800^{\circ}\text{C}$. The inside convection coefficient *h* is known to be 25 W/m² · K. Use minimum number of 2-noded finite elements and
 - (a) Determine the value of $k_{\rm B}$
 - (b) Determine the temperature distribution in the wall

[7]

[7]

- Q4. An isotropic clamped beam (**Figure 3**) of length length 2*L* with Young's modulus (*E*), density (ρ), uniform area of cross-section (A_b) and second moment of area (*I*_b) is supported at center by axial member of same material (*E*, ρ), length *L*/2 with cross-section area (A_a). Discretize the beam into two elements of length *L* and the axial member as a one element of length *L*/2.
 - (a) Determine the global stiffness matrix
 - (b) Determine the global mass matrix
 - (c) Determine fundamental frequency of vibration of the system.

Q5. Consider the truss structure (L = 1m) as shown in the **Figure 4** below. Use penalty method to impose the boundary conditions and determine displacement (u_s) at **Point 2**.

[7]