Birla Institute of Technology & Science, Pilani First Semester 2023-2024 Comprehensive Exam

Course No.	: ME G512	
Course Title	: Finite Element Methods	
Nature of Exam	: Open Book	
Weightage	: 35%	No of Pages -2
Duration	: 3 hours	No. of Questions $= 6$
Date of Exam	: 09/12/2023	

Note to Students:

All parts of a question should be answered consecutively. Each answer should start from a fresh page.
 Assumptions made if any, should be stated clearly at the beginning of your answer.

- Q.1. The nodal displacement values (in mm) of the elements shown in **Figure Q1a** and **Figure Q1b** are $u_1 = 0.2645$, $u_2 = 0.2172$, $u_3 = 0.1800$ for the triangular element and $u_1 = 0.2173$, $u_3 = 0.1870$, $u_2 = u_4 = 0.2232$ for the rectangular element. Dimensions of the elements are in meters.
 - a). Compute u, $\partial u/\partial x$ and $\partial u/\partial y$ at the point (x, y) = (0.375 m, 0.375 m) for triangular element.
 - b). Compute u, $\partial u/\partial x$ and $\partial u/\partial y$ at the point (x, y) = (0.375 m, 0.375 m) for rectangular element.

Q.2. (a) Determine the interpolation function ψ₉ in terms of area coordinates, L_i, for the triangular element shown in Figure Q2a.
(b) Consider the five-noded element shown in Figure Q2b and determine interpolation functions

[3+4=7].

for the element in terms of natural coordinates, ξ and η .

Figure Q2a

Figure Q2b

- Q.3. A bar member (E = 200 GPa, A = 40 cm²) of an aerospace structure is discretised using one 3noded bar element, as shown in the Figure 3b below. Determine the following:
 - (a) Interpolation functions for the 3-noded bar element shown in Figure Q3b.
 - (b) Global Stiffness Matrix for the bar

- Q.4. Determine the following for the beam shown in the **Figure Q4** using **two 2-noded Euler-Bernoulli's beam elements**.
 - (a) Global Stiffness Matrix
 - (b) Deflection and Slopes at all nodes

$$q_{0} = 400 \text{ N/m}$$

$$figure Q4$$

$$EI = 4 \times 10^{6} \text{ N-m}$$

Q.5. A wall with thickness L, is maintained at temperature T_0 at the left end and is insulated at the right end. The thermal conductivity of the wall material varies linearly as follows:

$$k = k_0 \left(1 - \frac{x}{2L}\right)$$
 for $0 < x < L$, where k_0 is a constant.

Assume one-dimensional heat conduction through the wall, discretise the wall length using only one 2-noded isoparametric element and derive the element temperature matrix (K_{Te}).

[5]

[3+3=6]

Q.6. The governing equation and boundary conditions for a structural phenomenon are given by:

$$\frac{d^2}{dx^2} \left(k_1 \frac{d^2 v}{dx^2} \right) + \lambda \frac{d^2 v}{dx^2} = 0 \qquad for \quad 0 < x < 1$$
$$v(0) = v(1) = 0, \quad \left(k_1 \frac{d^2 v}{dx^2} \right)_{\{x=0\}} = \left(k_1 \frac{d^2 v}{dx^2} \right)_{\{x=1\}} = 0$$

Where k_1 and λ are constants.

Derive the weak form of the governing equation and identify primary and secondary variables

[4]