Course No.
: ME G512
Course Title
: Finite Element Methods
Nature of Exam
Weightage : 35\%
Duration : 3 hours
Date of Exam
: 09/12/2023

No. of Pages $=2$
No. of Questions $=6$

Note to Students:

1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
2. Assumptions made if any, should be stated clearly at the beginning of your answer.
Q.1. The nodal displacement values (in mm) of the elements shown in Figure Q1a and Figure Q1b are $u_{1}=0.2645, u_{2}=0.2172, \mathrm{u}_{3}=0.1800$ for the triangular element and $u_{1}=0.2173, u_{3}=0.1870, u_{2}=$ $u_{4}=0.2232$ for the rectangular element. Dimensions of the elements are in meters.
a). Compute $u, \partial u / \partial x$ and $\partial u / \partial y$ at the point $(x, y)=(0.375 \mathrm{~m}, 0.375 \mathrm{~m})$ for triangular element.
b). Compute $u, \partial u / \partial x$ and $\partial u / \partial y$ at the point $(x, y)=(0.375 \mathrm{~m}, 0.375 \mathrm{~m})$ for rectangular element.

Figure Q1a

Figure Q1b

$$
[3+3=6]
$$

Q.2. (a) Determine the interpolation function ψ_{9} in terms of area coordinates, L_{i}, for the triangular element shown in Figure Q2a.
(b) Consider the five-noded element shown in Figure Q2b and determine interpolation functions for the element in terms of natural coordinates, ξ and η.

$$
[3+4=7]
$$

Figure Q2a

Figure Q2b
Q.3. A bar member $\left(\mathrm{E}=200 \mathrm{GPa}, \mathrm{A}=40 \mathrm{~cm}^{2}\right)$ of an aerospace structure is discretised using one 3noded bar element, as shown in the Figure 3b below. Determine the following:
(a) Interpolation functions for the 3-noded bar element shown in Figure Q3b.
(b) Global Stiffness Matrix for the bar

Figure Q3a

Figure Q3b
Q.4. Determine the following for the beam shown in the Figure Q4 using two 2-noded Euler-

Bernoulli's beam elements.

(a) Global Stiffness Matrix
(b) Deflection and Slopes at all nodes

Figure Q4
Q.5. A wall with thickness L, is maintained at temperature T_{0} at the left end and is insulated at the right end. The thermal conductivity of the wall material varies linearly as follows:

$$
k=k_{0}\left(1-\frac{x}{2 L}\right) \text { for } 0<x<L, \text { where } k_{0} \text { is a constant. }
$$

Assume one-dimensional heat conduction through the wall, discretise the wall length using only one 2-noded isoparametric element and derive the element temperature matrix $\left(\mathrm{K}_{\mathrm{Te}}\right)$.
Q.6. The governing equation and boundary conditions for a structural phenomenon are given by:

$$
\begin{gathered}
\frac{d^{2}}{d x^{2}}\left(k_{1} \frac{d^{2} v}{d x^{2}}\right)+\lambda \frac{d^{2} v}{d x^{2}}=0 \quad \text { for } 0<x<1 \\
v(0)=v(1)=0, \quad\left(k_{1} \frac{d^{2} v}{d x^{2}}\right)_{\{x=0\}}=\left(k_{1} \frac{d^{2} v}{d x^{2}}\right)_{\{x=1\}}=0
\end{gathered}
$$

Where k_{1} and λ are constants.
Derive the weak form of the governing equation and identify primary and secondary variables

