BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI

ME G535 Advanced Engineering Mathematics Midsemester Exam

November 4, 2022

Instructions

- There are eight questions. Answer all the questions.
- Answer the questions in the given order. Start each question on a fresh page.

1. (3 marks) The null space of a 3×4 matrix A is $\lambda\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right], \lambda \in \mathbb{R}$.
(a) What is the rank of A and the complete solution of $\mathrm{Ax}=0$?
(b) What is the exact row reduced echelon form R of A ?
2. (3 marks) Under what conditions on b_{1} and b_{2} (if any) does $A x=b$ have a solution?

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
2 & 4 & 0 & 7
\end{array}\right], b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Find two vectors in the null space of A , and the complete solution to $A x=b$.
3. (3 marks) Consider a set A containing all 2 by 3 matrices. Is the set a vector space? What is the basis for this space?
4. (3 marks) Let $\mathrm{u}=(\lambda, 1,0), \mathrm{v}=(1, \lambda, 1)$ and $\mathrm{w}=(0,1, \lambda)$. Find all values of λ which make $\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ a linearly dependent subset of \mathbb{R}^{3}
5. (3 marks) Find E^{2}, E^{9} and E^{-1} if

$$
E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]
$$

6. (5 marks) The second variation of a functional $J: A \rightarrow \mathbb{R}$ at $y_{0} \in A$ in the direction h is defined by

$$
\left.\delta^{2} J\left(y_{0}, h\right) \equiv \frac{d^{2}}{d \epsilon^{2}} J\left(y_{0}+\epsilon h\right)\right|_{\epsilon=0} .
$$

Find the second variation of the functional

$$
J(y)=\int_{0}^{1}\left(x y^{\prime 2}+y \sin y^{\prime}\right) d x, y \in C^{2}[0,1] .
$$

7. (5 marks) Let $J(y)=\int_{0}^{1}\left(3 y^{2}+2 y^{\prime}+x\right) d x+y(0)^{2}$, where $y \in C^{2}[0,1], y(0)=1$. Let $y_{0}=x^{2}$ and $h=x$. Find $\delta J\left[y_{0}, h\right]$
8. (5 marks) Find the shortest (extremal) path from $(0,0,0)$ to $(1,1,1)$ on the surface $z=x y$.
