BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI

ME G535: Advanced Engineering Mathematics
Midsemester Exam, $10^{\text {th }}$ October, 2023.
All questions carry equal weightage. Maximum marks $=40$. Duration $1 \frac{1}{2} h$.

1. Suppose A has eigen value-eigen vectors pairs $(0, \mathrm{u}),(3, \mathrm{v}),(5, \mathrm{w}) \ni \mathrm{u}, \mathrm{v}, \mathrm{w}$ are linearly independent, give a basis for the null space and a basis for the column space of A. Find a particular solution for $A x=v+w$.
2. Find a matrix whose eigen values are 1,2 with corresponding eigen vectors $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
3. Find a unitary matrix U and a triangular matrix T so that $U^{-1} A U=T, A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$.
4. (a) Find an orthonormal basis for the column space of A.

$$
A=\left[\begin{array}{cc}
1 & -6 \\
3 & 6 \\
4 & 8 \\
5 & 0 \\
7 & 8
\end{array}\right]
$$

(b) Write $A=Q R$, where Q has orthonormal columns and R is right triangular matrix. (c) Find the least-squares solution to $\mathrm{Ax}=\mathrm{b}$, if $\mathrm{b}=(-3,7,1,0,4)$.
5. Find bases for the four fundamental subspaces of

$$
A=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
$$

6. Use elimination to find the triangular factors in $\mathrm{A}=\mathrm{LU}$, if

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

7.

$$
\mathcal{L} y \equiv-\frac{d^{2} y}{d x^{2}}, y \in\left\{C^{2}[0,2 \pi], y(0)=y(2 \pi)\right\}
$$

Show that \mathcal{L}, is a self-adjoint operator. What are the eigen vectors of this operator? Show that they are orthogonal.
8. Let the column vector ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) represent a quadratic polynomial given by $a x^{2}+b x+c$.
(a) Write the 3 by 3 matrix D such that

$$
D\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
b \\
2 c \\
0
\end{array}\right] .
$$

(b) Compute D^{3} and interpret the results in terms of derivative.
(c) What are the eigen values and eigen vectors of D?

