BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI

ME G535: Advanced Engineering Mathematics
Comprehensive Exam (Part A), $8^{\text {th }}$ December, 2023.
All questions carry equal weightage. Maximum marks $=40$.

1. Find the SVD of

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

2. For what numbers a and b, the matrices A and B are positive definite?

$$
A=\left[\begin{array}{lll}
a & 2 & 2 \\
2 & a & 2 \\
2 & 2 & a
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & b & 8 \\
4 & 8 & 7
\end{array}\right]
$$

3. The following equation shows the relation between stress and strain components following summation convention. Find the bulk modulus of the solid in terms of λ and μ.

$$
\begin{gathered}
\sigma_{i j}=\lambda \epsilon_{k k} \delta_{i j}+2 \mu \epsilon_{i j} \\
\Longrightarrow \sigma_{i j} \delta_{i j}=\lambda \epsilon_{k k} \delta_{i j} \delta_{i j}+2 \mu \epsilon_{i j} \delta_{i j}
\end{gathered}
$$

Bulk Modulus κ is defined as

$$
\kappa=\frac{\sigma_{11}+\sigma_{22}+\sigma_{33}}{3\left(\epsilon_{11}+\epsilon_{22}+\epsilon_{33}\right)}
$$

4. Find the reciprocal basis $\left(e^{1}, e^{2}\right)$, for $e_{1}=[a, b], e_{2}=[c, d]$.
5. Evaluate $\epsilon_{i j k} \epsilon_{j k l} \epsilon_{k l i}$
6. Find the shortest route from $(0,1 / 5,0)$ to $(1 / 3,0,10)$ on the cylindrical surface $9 x^{2}+25 y^{2}=1$.
7. If A is a symmetric matrix, the minimum of the quadratic functional $Q(x)=\frac{1}{2} x^{T} A x-x^{t} b$ provides the solution for $A x=b$. Using the above statement, find a variational principle for the following problem.

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=f(x) \forall x \in[0,1] \\
y(0)=0, y^{\prime}(1)=2
\end{gathered}
$$

8. The basis vectors e_{i}^{\prime} and e_{i} are related as follows:

$$
\left[\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]
$$

If $\vec{A}=2 e_{1}+3 e_{2}+4 e_{3}$, find the components of A in e_{i}^{\prime} basis.

