Birla Institute of Technology and Science Pilani

ME G611: Computer Aided Analysis and Design Second Semester 2022-23

$13^{\text {th }}$ March, 2023

Duration: 90 min

Maximum Marks: 35

1. [10 marks] In the figure Q 1 , the vertex A is at the origin $(0,0)$. The coordinates of C and D are $(10,5)$, $(5,10)$ respectively. The coordinates of P, Q and R are $(20,0),(20+\mathrm{a}, \mathrm{a}),(20-\mathrm{a}, \mathrm{a})$ respectively, where $\mathrm{a}=\frac{5}{\sqrt{2}}$.
(a) Find the isometric transformation matrix which moves the $\triangle P Q R$ to $\triangle P^{\prime} Q^{\prime} R$ ' such that R ' coincides with D, Q ' coincides with C, P ' lies inside the polygon ABCDE .
(b) Find the isometric transformation matrix which moves the $\triangle P Q R$ to $\Delta P * Q * R *$ such that $R *$ coincides with $\mathrm{D}, \mathrm{Q}^{*}$ coincides with $\mathrm{C}, \mathrm{P}^{*}$ lies outside the polygon ABCDE . Write down the algorithm first before presenting the calculations.

Figure Q1: Isometric Transformation

Solution: Method: It is given $\mathrm{Q}^{\prime} \rightarrow \mathrm{C}, \mathrm{R}^{\prime} \rightarrow \mathrm{D}$. We need to move PQR to $\mathrm{P}^{\prime} \mathrm{CD}$. From the geometry we can determine the position of P^{\prime} as $(5,5)$ if inside and $(10,10)$ if outside. Since we have initial and final coordinates and the transformation matrix is given as isometric, we can easily find the matrix using the matrix inverse method.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5 & 10 & 5 \\
5 & 5 & 10 \\
1 & 1 & 1
\end{array}\right]=T_{1}\left[\begin{array}{ccc}
20 & 20+a & 20-a \\
0 & a & a \\
1 & 1 & 1
\end{array}\right]=T_{1}\left[\begin{array}{ccc}
20 & 20.5355 & 16.4645 \\
0 & 3.5355 & 3.5355 \\
1 & 1 & 1
\end{array}\right]} \\
& T_{1}=\left[\begin{array}{ccc}
5 & 10 & 5 \\
5 & 5 & 10 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
20 & 20.5355 & 16.4645 \\
0 & 3.5355 & 3.5355 \\
1 & 1 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ccc}
5 & 10 & 5 \\
5 & 5 & 10 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -0.2828 & 1 \\
0.1414 & 0.1414 & -2.8284 \\
-0.1414 & 0.1414 & 2.8284
\end{array}\right]=\left[\begin{array}{ccc}
0.7071 & 0.7071 & -9.1421 \\
-0.7071 & 0.7071 & 19.1421 \\
0 & 0 & 1
\end{array}\right] \\
& T 2=\left[\begin{array}{ccc}
10 & 10 & 5 \\
10 & 5 & 10 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -0.2828 & 1 \\
0.1414 & 0.1414 & -2.8284 \\
-0.1414 & 0.1414 & 2.8284
\end{array}\right]=\left[\begin{array}{ccc}
0.7071 & 0.7071 & -4.1421 \\
-0.7071 & 0.7071 & 24.1421 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

2. [10 marks] Determine tangent $\hat{\mathbf{T}}$, normal $\hat{\mathbf{N}}$, binormal $\hat{\mathbf{B}}$ vectors, curvature κ, and torsion τ for the curve $\mathbf{r}(u)=\left[u^{3}-u^{2}, u^{2}+u^{3}, u+u^{2}+u^{3}\right]^{T}$ at $u=0$. State if the curve is planar or 3 dimensional.

$$
\begin{aligned}
\mathbf{r}(u) & =\left[\begin{array}{c}
u^{3}-u^{2} \\
u^{2}+u^{3} \\
u+u^{2}+u^{3}
\end{array}\right], \mathbf{r}^{\prime}(u)=\left[\begin{array}{c}
3 u^{2}-2 u \\
2 u+3 u^{2} \\
1+2 u+3 u^{2}
\end{array}\right], \mathbf{r}^{\prime \prime}(u)=\left[\begin{array}{l}
6 u-2 \\
2+6 u \\
2+6 u
\end{array}\right], \mathbf{r}^{\prime \prime \prime}(u)=\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right] \\
\hat{\mathbf{T}} & =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \hat{\mathbf{B}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right] \hat{\mathbf{N}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], c=1, \kappa=2.8284, \tau=-3
\end{aligned}
$$

Since the $\tau \neq 0$, the curve is not a planar curve.
3. [5 marks] $v=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is a quaternion. Find the v^{-1}, v^{7}, v^{8}.

Since the v is unit quaternion, $v^{2}=-1$,
$v^{-1}=-v$,
$v^{7}=v^{6} v=(-1)^{3} v=-v$
$v^{8}=(-1)^{4}=1$
4. [5 marks] Consider two frames.
(i) Frame A with origin at $(0,0,0)$ the x -axis aligned in the direction of $(-0.6101,0.5428,0.5772)$ the y -axis aligned in the direction of $(-0.4169,0.3996,-0.8164)$ and the z -axis aligned in the direction of (-0.6738, -0.7387, -0.0175).
(ii) Frame B with origin at $(0,0,0)$ the x -axis aligned in the direction of $(-0.4129,0.8744,0.2547)$ the y -axis aligned in the direction of $(-0.6783,-0.1086,-0.7267)$ and the z -axis aligned in the direction of $(-0.6077,-0.4729,0.6380)$. Given that both the frames are orthogonal matrices, find the rotation matrix which will move frame A to coincide with frame B.

$$
A=\left[\begin{array}{ccc}
-0.6101 & -0.4169 & -0.6738 \\
0.5428 & 0.3996 & -0.7387 \\
0.5772 & -0.8164 & -0.0175
\end{array}\right] B=\left[\begin{array}{ccc}
-0.4129 & -0.6783 & -0.6077 \\
0.8744 & -0.1086 & -0.4729 \\
0.2547 & -0.7267 & 0.6380
\end{array}\right]
$$

To find T_{R} where

$$
\begin{aligned}
B & =T_{R} A \\
T_{R} & =B A^{-1}=B A^{T} \\
T_{R} & =\left[\begin{array}{ccc}
0.9442 & -0.0463 & 0.3261 \\
-0.1696 & 0.7806 & 0.6016 \\
-0.2823 & -0.6234 & 0.7291
\end{array}\right]
\end{aligned}
$$

5. [5 marks] Find the orthographic projection of a circle $\mathbf{r}(u)=(2 \cos u, 2 \sin u, 0)^{T}$ on the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=10$.

Solution:

$$
\begin{aligned}
\Pi & =\left[\begin{array}{l}
1 \\
1 \\
1 \\
10
\end{array}\right] V=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] \text { Prroj }=\left[\begin{array}{cccc}
-2 & 1 & 1 & -10 \\
1 & -2 & 1 & -10 \\
1 & 1 & -2 & -10 \\
0 & 0 & 0 & -3
\end{array}\right] \\
\mathbf{r}^{*}(u) & =\left[\begin{array}{llll}
\frac{4 c-2 s+10}{3} & \frac{-2 c+4 s+10}{3} & \frac{-2 c-2 s+10}{3} & 1
\end{array}\right]^{T}
\end{aligned}
$$

Where $c:=\cos u$ and $s:=\sin u$

