Department of EEE, BITS PILANI K. K. BIRLA GOA CAMPUS

End-Semester Question Paper - IC Fabrication Technology (MEL G 611)

Date: 16-12-2022 Time: 14:00 hours to 17:00 hours
Closed Book Full-Marks: 40

Use the Tables (wherever values are not given in the question) given below suitably for solving the problems

 Give a line diagram of a conventional molecular beam epitaxy and mark different portions clearly.

Calculate the mean free path (in m) of air-molecule (diameter = $3.7\dot{A}$) at room temperature and at a pressure of 10^{-4} Pa using the formula using rigorous derivation. No derivation needed.

Assume an effusion oven geometry of area A = 7 cm² and distance L = 12 cm between the top of the oven and the gallium-arsenide surface. Calculate the molecular bean epitaxy growth rate (in nm/s) for the effusion oven filled with gallium-arsenide at 1000°C. Given surface density of gallium atom is 6.5×10^{14} per cm² and thickness of monolayer = $2.8 \, \dot{A}$.

2+2+6 = 10-marks

2. Assume 100 keV Tellurium is implanted on a 300 mm Gallium-Arsenide wafer at a dose of 6×10^{14} ions/cm². Calculate the peak concentration (in $ions/cm^3$) and the required ion-beam current (in mA) for 1 minute of implantation.

Calculate the damage density (per cm^3) caused by 100 keV boron ions if we assume that at 50 keV RP is half of that at 100 keV. Given the spacing between the lattice planes = 0.3 nm and that the energy required to displace a silicon atom = 18 eV. Assume on an average a displaced lattice atom moves 2.5 nm.

3+3+4 = 10-marks

3. Electron densities in RIE and HDP are at 10¹⁰/cm³ and 10¹²/cm³ respectively. If chamber pressure is 250 mTorr for RIE and 15 mTorr for HDP, estimate he ionization efficiency (in fraction) for both cases.

If Do = 24 cm 2 /s and E_a = 3 eV, for Arsenic diffusion, calculate the diffusion-length (in cm) after 1 hours of diffusion in Gallium-Arsenide at 1200°C. Repeat the exercise for E_a = 4 eV. Now justify your results with qualitative explanation for the dominant mechanism of diffusion and its dependence on activation energy.

2+2+2+2+4 = 12-marks

4. What should be each side (in μ m) of a square window lithographically cut to design a 10pF MOS capacitor using silicon dioxide as dielectric of thickness 90Å, assuming completely anisotropic growth of the dielectric.

If while fabrication, dielectric-deposition experiences a degree of anisotropy of 0.7, what should be the error (in %) of the capacitor of earlier design.

For an integrated spiral inductor of 20 nH, what is the radius (in μ m) if number of turns = 15? Given permeability of vacuum is: $4\pi \times 10^{-7}$ H/m. The inductor is constructed on a silicon dioxide topped p-doped silicon substrate of doping concentration of 10^{15} / cm³.

2+4+2 = 8-marks

			TABLE		
Impurity	Al	В	0	P	As
k_0	0.002	0.8	0.25	0.35	0.3

Relative	Silicon	Silicon Dioxide	Silicon Nitride	Tantalum Pentoxide	
Permittivity	11.7	3.9	7	25	

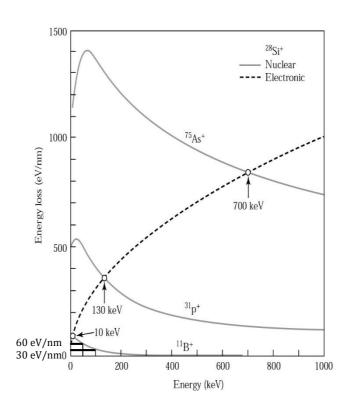
TABLE

(Oxidation in Steam)

<u>(Oxidation in Steam)</u>								
Oxidation A(µm)		B(µm²/h)	B/A(µm/h)	τ (h)				
Temp. (in °C)								
1200	0.05	0.72	14.4	0				
1100	0.11	0.51	4.64	0				
1000	0.226	0.287	1.27	0				
920	0.5	0.203	0.40	0				

Implant Type		R _p (μm)	σ _P (μm)			
	10 keV	100 keV	1000 keV	10 keV	100 keV	1000 keV	
Te (in GaAs)	0.005	0.029	0.3	0.002	0.012	0.09	
Zn (in GaAs)	0.009	0.041	0.5	0.005	0.02	0.18	
B (in Si)	0.025	0.30	2.0	0.018	0.07	0.15	
P (in Si)	0.015	0.12	1.15	0.009	0.05	0.3	

Partial Pressure (in Pa) of Gallium and Arsenic over Gallium Arsenide as a Function of Temperature (T)


	800°C	900°C	1000°C
As ₂ (As-rich)	7×10 ³	1.1×10 ⁴	5.0×10 ⁴
Ga (As-rich)	1.0×10 ⁻⁵	7.0×10 ⁻⁴	4.0×10 ⁻²
As ₂ (Ga-rich)	2×10-2	1.1	6×10¹
Ga (Ga-rich)	6×10 ⁻³	5.5×10 ⁻²	6×10 ⁻¹

Some Useful Constants

E _a (Si)	k	q (Cou I)	μ _n (cm²/V -s)	μ _p (cm²/V -s)	Permit tivity of Ta ₂ O₅	R	Avogadro's No.	አ ^ር ዕ
2.48 kCal/ mol	1.38×10 ⁻²³ J/K (=8.617×10 ⁻⁵ ev/K)	1.6× 10 ⁻¹⁹	1000	450	25	0.082 lit atm/mol-K	6.023×10 ²³	8.85 ×10 ⁻¹⁴ (F/cm)

Molecular Weight

Element	Si	В	Р	Ga	As_2	GaAs
Molecular Weight	28.09	10.8	30.97	69.72	149.84	144.63

