Department of EEE, BITS PILANI K. K. BIRLA GOA CAMPUS ## End-Semester Question Paper - IC Fabrication Technology (MEL G 611) Date: 16-12-2022 Time: 14:00 hours to 17:00 hours Closed Book Full-Marks: 40 Use the Tables (wherever values are not given in the question) given below suitably for solving the problems Give a line diagram of a conventional molecular beam epitaxy and mark different portions clearly. Calculate the mean free path (in m) of air-molecule (diameter = $3.7\dot{A}$) at room temperature and at a pressure of 10^{-4} Pa using the formula using rigorous derivation. No derivation needed. Assume an effusion oven geometry of area A = 7 cm² and distance L = 12 cm between the top of the oven and the gallium-arsenide surface. Calculate the molecular bean epitaxy growth rate (in nm/s) for the effusion oven filled with gallium-arsenide at 1000°C. Given surface density of gallium atom is 6.5×10^{14} per cm² and thickness of monolayer = $2.8 \, \dot{A}$. 2+2+6 = 10-marks 2. Assume 100 keV Tellurium is implanted on a 300 mm Gallium-Arsenide wafer at a dose of 6×10^{14} ions/cm². Calculate the peak concentration (in $ions/cm^3$) and the required ion-beam current (in mA) for 1 minute of implantation. Calculate the damage density (per cm^3) caused by 100 keV boron ions if we assume that at 50 keV RP is half of that at 100 keV. Given the spacing between the lattice planes = 0.3 nm and that the energy required to displace a silicon atom = 18 eV. Assume on an average a displaced lattice atom moves 2.5 nm. 3+3+4 = 10-marks 3. Electron densities in RIE and HDP are at 10¹⁰/cm³ and 10¹²/cm³ respectively. If chamber pressure is 250 mTorr for RIE and 15 mTorr for HDP, estimate he ionization efficiency (in fraction) for both cases. If Do = 24 cm 2 /s and E_a = 3 eV, for Arsenic diffusion, calculate the diffusion-length (in cm) after 1 hours of diffusion in Gallium-Arsenide at 1200°C. Repeat the exercise for E_a = 4 eV. Now justify your results with qualitative explanation for the dominant mechanism of diffusion and its dependence on activation energy. 2+2+2+2+4 = 12-marks 4. What should be each side (in μ m) of a square window lithographically cut to design a 10pF MOS capacitor using silicon dioxide as dielectric of thickness 90Å, assuming completely anisotropic growth of the dielectric. If while fabrication, dielectric-deposition experiences a degree of anisotropy of 0.7, what should be the error (in %) of the capacitor of earlier design. For an integrated spiral inductor of 20 nH, what is the radius (in μ m) if number of turns = 15? Given permeability of vacuum is: $4\pi \times 10^{-7}$ H/m. The inductor is constructed on a silicon dioxide topped p-doped silicon substrate of doping concentration of 10^{15} / cm³. 2+4+2 = 8-marks | | | | TABLE | | | |----------|-------|-----|--------------|------|-----| | Impurity | Al | В | 0 | P | As | | k_0 | 0.002 | 0.8 | 0.25 | 0.35 | 0.3 | | Relative | Silicon | Silicon Dioxide | Silicon Nitride | Tantalum
Pentoxide | | |--------------|---------|-----------------|-----------------|-----------------------|--| | Permittivity | 11.7 | 3.9 | 7 | 25 | | **TABLE** (Oxidation in Steam) | <u>(Oxidation in Steam)</u> | | | | | | | | | |-----------------------------|-------|----------|-----------|-------|--|--|--|--| | Oxidation A(µm) | | B(µm²/h) | B/A(µm/h) | τ (h) | | | | | | Temp. (in °C) | | | | | | | | | | 1200 | 0.05 | 0.72 | 14.4 | 0 | | | | | | 1100 | 0.11 | 0.51 | 4.64 | 0 | | | | | | 1000 | 0.226 | 0.287 | 1.27 | 0 | | | | | | 920 | 0.5 | 0.203 | 0.40 | 0 | | | | | | Implant
Type | | R _p (μm |) | σ _P (μm) | | | | |-----------------|-----------|--------------------|----------|---------------------|---------|-------------|--| | | 10
keV | 100
keV | 1000 keV | 10
keV | 100 keV | 1000
keV | | | Te (in GaAs) | 0.005 | 0.029 | 0.3 | 0.002 | 0.012 | 0.09 | | | Zn (in GaAs) | 0.009 | 0.041 | 0.5 | 0.005 | 0.02 | 0.18 | | | B (in Si) | 0.025 | 0.30 | 2.0 | 0.018 | 0.07 | 0.15 | | | P (in Si) | 0.015 | 0.12 | 1.15 | 0.009 | 0.05 | 0.3 | | ## Partial Pressure (in Pa) of Gallium and Arsenic over Gallium Arsenide as a Function of Temperature (T) | | 800°C | 900°C | 1000°C | |---------------------------|----------------------|----------------------|----------------------| | As ₂ (As-rich) | 7×10 ³ | 1.1×10 ⁴ | 5.0×10 ⁴ | | Ga (As-rich) | 1.0×10 ⁻⁵ | 7.0×10 ⁻⁴ | 4.0×10 ⁻² | | As ₂ (Ga-rich) | 2×10-2 | 1.1 | 6×10¹ | | Ga (Ga-rich) | 6×10 ⁻³ | 5.5×10 ⁻² | 6×10 ⁻¹ | **Some Useful Constants** | E _a (Si) | k | q
(Cou
I) | μ _n
(cm²/V
-s) | μ _p
(cm²/V
-s) | Permit
tivity of
Ta ₂ O₅ | R | Avogadro's
No. | አ ^ር ዕ | |----------------------|--|---------------------------|---------------------------------|---------------------------------|---|------------------------|------------------------|-----------------------------------| | 2.48
kCal/
mol | 1.38×10 ⁻²³ J/K
(=8.617×10 ⁻⁵ ev/K) | 1.6×
10 ⁻¹⁹ | 1000 | 450 | 25 | 0.082 lit
atm/mol-K | 6.023×10 ²³ | 8.85
×10 ⁻¹⁴ (F/cm) | Molecular Weight | Element | Si | В | Р | Ga | As_2 | GaAs | |------------------|-------|------|-------|-------|--------|--------| | Molecular Weight | 28.09 | 10.8 | 30.97 | 69.72 | 149.84 | 144.63 |