Attempt All Questions. Please use the 'Table given at the end to select appropriate values wherever they are not given in the question.

1. For the switch given in Fig. 1, derive the expression of $\mathrm{V}_{\text {out }}$ (in V) versus time (t) and if $\mathrm{V}_{\mathrm{clk}}=\mathrm{V}_{\text {in }}$ $=3 \mathrm{~V}$ and estimate $\mathrm{V}_{\text {out }}\left(\mathrm{in} \mathrm{V}\right.$) at $\mathrm{t}=1 \mathrm{~ns}$. Estimate the time (in ns) at which $\mathrm{V}_{\text {out }}$ is within $\mathbf{1 0 \%}$ error from its final value. Ignore channel length modulation and body effect, assume intially the charge on $\mathrm{C}_{\mathrm{H}}=0$.
For a non-inverting $S C$ amplifier if $C_{1}=10 C_{2}=10 \mathrm{pf}$ and $C_{i n}=0.1 \mathrm{pf}$, calculate the gain error (in\%) for the OL gain of 1000.

$2+2+4+2=10-$ marks
2. A type-1 PLL has $\omega_{\text {LPF }}=1 \mathrm{Mhz}, K_{v c o}=100 \mathrm{Mhz} / \mathrm{V}$ and $K_{\text {PD }}=1 \mathrm{~V} / \mathrm{rad}$. Derive the transfer function, estimate the poles and determine the step response of the PLL if a frequecy step of $\Delta \omega_{\text {in }}$ is given at time $t=t_{1}$ on $\omega_{\text {in. }}$. All frequencies and phases must be in rad/s and rad. Draw a plot (need not be to scale) indicating different parameters at required places.
3. Sketch a double balanced Gilbert Quad Mixer and denote drain current expressions with appropriate subscripts for i.f. as applicable. Show the terminals for inserting V_{lo} and V_{rf}. No description of operation is needed.

If the aspect ratios of all he MOS devices are $50.0 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $\mathrm{V}_{\mathrm{rf}}=2 \mathrm{~V}$ for, estimate the load resistance such that the conversion gain is 20 dB .

$$
(2+2+1+1)+2=8 \text {-marks }
$$

4. For a 2-amplifier latch, derive the time taken (T) to reach the required value $\left(\mathrm{V}_{\mathrm{xy} 1}\right)$ that can be accepted as a valid login level, starting from initial value of $V_{x y o}$, provided that the open look gain of the amplifier is $-\mathrm{A}_{0}$ and the time constant is τ_{0}.
If the sampled value has a uniform distribution between $\pm \mathrm{V}_{\mathrm{XY} 1}$ then estimate the probability of metastability in a comparator latch if $A_{0}=1000, \tau_{0}=100 \mathrm{~ns}$ and the circuit operates on a $\mathbf{2 G h z}$ clock.
For an 8-bit ADC, what should be maximum clock-jitter duration in order to keep the sinusoidal analog input (of 50 mV peak to peak value and 1 Mhz frequency) to vary by less that 1-LSB?
Which of the two potential errors are suppressed by Gray encoding in flash converters?
${ }^{\text {i }}$ Table of Values

Parameters	$\mathrm{V}_{\mathrm{Th}}(\mathrm{V})$	$\gamma(\sqrt{V})$	$\phi_{f}(\mathrm{~V})$	$\mathrm{L}_{\mathrm{D}}(\mathrm{m})$	$\lambda\left(\mathrm{V}^{-1}\right)$ for $L_{G e o}=0.5 \mu \mathrm{~m}$	$\mu_{n / p} C_{O X}\left(\mathrm{~A} / \mathrm{V}^{2}\right)$
NMOS	0.7	0.5	0.9	0.08×10^{-6}	0.1	134.26×10^{-6}
PMOS	-0.8	0.4	0.8	0.09×10^{-6}	0.2	38.36×10^{-6}
Common	$n_{i}=1.45 \times 10^{10} \mathrm{~cm}^{-3}, q=1.6 \times 10^{-19} C ; k=1.38 \times 10^{-23} \frac{J}{K} ; V_{D D}=V_{C k}=3.0 V ; V_{S S}=0 \mathrm{~V} ; \beta_{N P N}=150, \beta_{P N P}=100$, Room Temperature $=27^{\circ} C ; \varepsilon_{S i}=11.68 ; \varepsilon_{S i O_{2}}=3.6 ; \varepsilon_{0}=8.85 \times 10^{-12} \frac{F}{m} ; C_{G D O_{N M O S}}=0.4 \times 10^{-9} \frac{F}{m} ; C_{o x}=6.9$ $f F / \mu m^{2}$ for $t_{o x}=50 \dot{A}$					

Table of Equations (You might have seen in a distant galaxy....)

1.	$I_{D}=\frac{1}{2} \mu_{n / p} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right)^{2} ; I_{D}=\frac{1}{2} \mu_{n / p} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)$ when channel length is included
2.	$\phi_{0}=\frac{k T}{q} \ln \left(\frac{N_{D} N_{A}}{n_{i}{ }^{2}}\right)$
3.	$Q_{B 0}=-\left(1-\frac{\Delta L_{S}+\Delta L_{D}}{2 L}\right) \sqrt{2 q \epsilon_{S i} N_{A}\left\|2 \Phi_{F}\right\|}$
4.	$C_{j 0}=\sqrt{\frac{q \epsilon_{S i}}{2}\left(\frac{N_{D} N_{A}}{N_{D}+N_{A}}\right) \frac{1}{\Phi_{0}}}$
5.	$\Delta V_{T 0}=\frac{1}{C_{o x}} \sqrt{2 q \xi_{S i} N_{A}\left\|2 \Phi_{F}\right\| \cdot \frac{x_{j}}{2 L} \cdot\left[\left(\sqrt{1+\frac{2 x_{d S}}{x_{j}}}-1\right)+\left(\sqrt{1+\frac{2 x_{d D}}{x_{j}}}-1\right)\right]}$
6.	$x_{d}=\sqrt{\frac{q \epsilon_{S i}}{2}\left(\frac{N_{D} N_{A}}{N_{D}+N_{A}}\right)\left(\Phi_{0}-V\right)}$

