Closed Book
Full-Marks: 20

Attempt All Questions. Please use the 'Table given at the end to select appropriate values wherever they are not given in the question.

1. For Fig. 1(a) below derive from first principle the normalised expression of non-linearity in voltage-gain. Calculate the nonlinearity (\%) if $V_{\text {id }}=50.0 \mathrm{mV}$. For Fig. 1(b), assuming $\xi_{\gg} \xi_{c}$, estimate the voltage gain provided that saturation velocities of NMOS and PMOS are in the ratio of $\mu_{\mathrm{n}} / \mu_{\mathrm{p}}$. Device dimensions in $\mu \mathrm{m}$ are indicated as applicable.

2. A clock of $\mathbf{5 0 \%}$ duty cycle at $\overline{\boldsymbol{\phi}}$, operates a latch comprising of 2-back-to-back amplifiers of identical gain 100 and a characteristic time constant $16 \mu \mathrm{~s}$. If the output-difference needs to be 0.2 V to be interpreted as a valid logic, what is the peak clock-frequency at which the output logic-level can be correctly interpreted if the worst case input difference is $\mathbf{2} \mathbf{~ m V}$.

What resistance does the SCP see looking into the drain of M7 in circuit of Fig. 2 to maintains a CMFN? What shall be the mode of operation of M5(6) for this?

3. the equivalent circuit of Fig 3, assuming the input $C M$-level $\approx V_{C C}, V_{B E}$ and $R_{\text {on-M1 }}$ to be constant. Estimate the small signal voltage gain at $t=\infty$, if $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, 2 \mathrm{C}_{\mathrm{p}}=\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mathrm{pf}$.

2+2= 4-marks
4. Which variation of 2-step ADC architecture makes the subtractor redundant? With a neat sketch briefly describe its operation for a-10-bit configuration with each step resolving for 5-bits.

1+3=4-marks

Parameters	$\mathrm{V}_{\text {Th }}(\mathrm{V})$	$\gamma(\sqrt{V})$	$\phi_{f}(\mathrm{~V})$	$\mathrm{L}_{\mathrm{D}}(\mathrm{m})$	$\begin{gathered} \lambda\left(\mathrm{V}^{-1}\right) \text { for } \\ L_{G e o}=0.5 \mu \mathrm{~m} \end{gathered}$	$\mu_{n / p} C_{O X}\left(\mathrm{~A} / \mathrm{V}^{2}\right)$
NMOS	0.7	0.5	0.9	0.08×10^{-6}	0.1	134.26×10^{-6}
PMOS	-0.8	0.4	0.8	0.09×10^{-6}	0.2	38.36×10^{-6}
Common	$\begin{gathered} n_{i}=1.45 \times 10^{10} \mathrm{~cm}^{-3}, q=1.6 \times 10^{-19} \mathrm{C} ; k=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}} ; V_{D D}=V_{C k}=3.0 \mathrm{~V} ; V_{S S}=0 \mathrm{~V} ; \beta_{N P N}=150, \beta_{P N P}=100, \\ \text { Room Temperature }=27^{\circ} \mathrm{C} ; \varepsilon_{S i}=11.68 ; \varepsilon_{S O_{2}}=3.6 ; \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}} ; C_{G D o_{N M O S}=0.4 \times 10^{-9} \frac{\mathrm{~F}}{\mathrm{~m}} ; C_{o x}=6.9} \quad f F / \mu \mathrm{m}^{2} \text { for } t_{o x}=50 \dot{A} \end{gathered}$					

Table of Equations (You might have seen in a distant galaxy....)

1.	$I_{D}=\frac{1}{2} \mu_{n / p} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right)^{2} ; I_{D}=\frac{1}{2} \mu_{n / p} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)$ when channel length is included
2.	$\phi_{0}=\frac{k T}{q} \ln \left(\frac{N_{D} N_{A}}{n_{i}^{2}}\right)$
3.	$Q_{B 0}=-\left(1-\frac{\Delta L_{S}+\Delta L_{D}}{2 L}\right) \sqrt{2 q \epsilon_{S i} N_{A}\left\|2 \Phi_{F}\right\|}$
4.	$C_{j 0}=\sqrt{\frac{q \epsilon_{S i}}{2}\left(\frac{N_{D} N_{A}}{N_{D}+N_{A}}\right) \frac{1}{\Phi_{0}}}$
5.	$\Delta V_{T 0}=\frac{1}{C_{o x}} \sqrt{2 q \xi_{s i} N_{A}\left\|2 \Phi_{F}\right\|} \cdot \frac{x_{j}}{2 L} \cdot\left[\left(\sqrt{1+\frac{2 x_{d S}}{x_{j}}}-1\right)+\left(\sqrt{1+\frac{2 x_{d D}}{x_{j}}}-1\right)\right]$
6.	$x_{d}=\sqrt{\frac{q \epsilon_{S i}}{2}\left(\frac{N_{D} N_{A}}{N_{D}+N_{A}}\right)\left(\Phi_{0}-V\right)}$

