BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 MID-SEMESTER EXAMINATION

Semester I: 2022-2023
Open Book
MEL G631: Physics and Modelling of Microelectronic Devices
Date: 04/11/2022 Maximum Marks: $\mathbf{6 0}$ Maximum Time: $\mathbf{9 0}$ minutes

```
Given (Use, if not specified in the questions):
\(\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{k}=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{k}^{-1}, \mathrm{~T}=300 \mathrm{~K}, \mathrm{kT} / \mathrm{q}=0.026 \mathrm{~V}, \varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\)
\({ }^{11}\) Si: \(\varepsilon_{\mathrm{r}}=11.8, \mathrm{n}_{\mathrm{i}}=1.45 \times 10^{10} \mathrm{~cm}^{-3}, \mathrm{E}_{\mathrm{g}}=1.12 \mathrm{eV}, \mu_{\mathrm{n}}=1200 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}, \mu_{\mathrm{p}}(\mathrm{Si})=480 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}, \mathrm{q} \chi=4.05 \mathrm{eV}\),
I \(\mathrm{N}_{\mathrm{C}}=2.8 \times 10^{19} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{v}}=1.04 \times 10^{19} \mathrm{~cm}^{-3}\).
Ge: \(\varepsilon_{\mathrm{r}}=16.2, \mathrm{n}_{\mathrm{i}}=2.4 \times 10^{13} \mathrm{~cm}^{-3}, \mathrm{E}_{\mathrm{g}}=0.66 \mathrm{eV}, \mathrm{q} \chi=4.13 \mathrm{eV}\)
GaAs: \(\varepsilon_{\mathrm{r}}=12.88, \mathrm{n}_{\mathrm{i}}=1.8 \times 10^{6} \mathrm{~cm}^{-3}, \mathrm{E}_{\mathrm{g}}=1.42 \mathrm{eV}, \mathrm{q} \chi=4.07 \mathrm{eV}\)
Au: \(\varphi_{\mathrm{M}}=4.75 \mathrm{eV}\)
```

Q1.
(a) Consider an Au / n-Si Schottky Junction under thermal equilibrium. Find the electron and hole concentrations in n-Si exactly at the interface. Also, find the potential at the interface.
(b) An $\mathrm{Au} / n-\mathrm{Si}\left(\mathrm{N}_{\mathrm{d}}=10^{16} \mathrm{~cm}^{-3}\right)$ Schottky junction is operated under 5 V reverse bias. How many fold the reverse current will increase due to the Schottky barrier lowering?
(c) A n-channel JFET having $\mathrm{t}=1.5 \mu \mathrm{~m}, \mathrm{~N}_{\mathrm{a}}=5 \times 10^{17} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{d}}=5 \times 10^{15} \mathrm{~cm}^{-3}$, operating at 3 V gate voltage. Find the particular V_{DS} voltage beyond that the current become saturate.

Q2. The following n-type semiconductor is showing non-uniform doping profile as $\mathrm{N}(\mathrm{X})=\mathrm{N}_{0}-\alpha \mathrm{X}$. ' α ' is a constant.

Under equilibrium,
(a) Derive the expression of electric field $\mathrm{E}(\mathrm{X}), \mathrm{J}_{\mathrm{n}(\text { diff })}$ and $\mathrm{J}_{\mathrm{n}(\text { drift })}$.
(b) Draw the qualitative profile of $\mathrm{E}(\mathrm{X}), \mathrm{J}_{\mathrm{n} \text { (diff) }}, \mathrm{J}_{\mathrm{n}(\text { (drift) }}$, and $\mathrm{J}_{\mathrm{n} \text { (total) }}$ as a function of X .
(c) Show the direction of e-flow, $\mathrm{E}(\mathrm{X}), \mathrm{J}_{\mathrm{n}(\text { diff }}, \mathrm{J}_{\mathrm{n} \text { (drift) }}$, and $\mathrm{J}_{\mathrm{n} \text { (total) }}$ on the given figure.

Q3. Draw an energy band diagram of a MS junction under thermal equilibrium where metal have the work function of 4.15 eV and the semiconductor (Si) have the donor doping of $2 \times 10^{15} \mathrm{~cm}^{-3}$.
(a) What potential will build up at the junction.
(b) What is the electron concentration in Si exactly at the MS interface?
(c) Sketch and label energy band diagram of the MS junction.
(d) Sketch and label the electric filed distribution for the MS junction.
(e) Sketch and label the potential distribution for the MS junction.

Q4. Sketch and label energy band diagram across a junction of A and B material at room temperature. Material A is Ge doped with $2.4 \times 10^{17} \mathrm{~cm}^{-3}$ donor and material B is GaAs is doped with $1.8 \times 10^{10} \mathrm{~cm}^{-3}$ acceptor impurity.
(a) Find built in potential (φ_{i}) across the junction. Also find individual built in potential of $\mathrm{A}\left(\varphi_{\mathrm{i}}\right)$ and B (φ_{iB}) side.
(b) Find depletion depth $\left(\mathrm{X}_{\mathrm{d}}\right)$ across the junction. Also find individual depletion depth of $\mathrm{A}\left(\mathrm{X}_{\mathrm{dA}}\right)$ and B (X_{dB}) side.
(c) Find the capacitance across the junction.

Q5. The general expression of maximum electric field of a $p n$ junction has been given below.

$$
\left|E_{\max }\right|=\frac{q}{\epsilon_{s}}\left[\frac{2 \epsilon_{s}\left(\varphi_{i}-V\right)}{q}\left(\frac{N_{a} N_{d}}{N_{a}+N_{d}}\right)\right]^{1 / 2}
$$

(a) Derive an expression of break down voltage $\left(\mathrm{V}_{\mathrm{BR}}\right)$ for a $p^{+} n$ junction as a function of 'break down critical electric field ($\mathrm{E}_{\text {Critical }}$)'. Use the above electric field expression to derive V_{BR}.
(b) Calculate the break down voltage $\left(\mathrm{V}_{\mathrm{BR}}\right)$ if $\mathrm{N}_{\mathrm{a}}=5 \times 10^{17} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{d}}=10^{15} \mathrm{~cm}^{-3}$. Consider $\mathrm{E}_{\text {Critical }}=$ $80 \mathrm{kV} / \mathrm{cm}$.

