BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

MID-SEMESTER EXAMINATION

Semester I: 2022-2023

Open Book

MEL G631: Physics and Modelling of Microelectronic Devices

Date: 04/11/2022 Maximum Marks: 60 Maximum Time: 90 minutes Given (Use, if not specified in the questions): $q=1.6\times10^{-19}$ C, $k=1.38\times10^{-23}$ m²kgs⁻²k⁻¹, T=300 K, kT/q=0.026 V, ε₀=8.85×10⁻¹⁴ F/cm Si: ε_r=11.8, n_i=1.45×10¹⁰ cm⁻³, E_g=1.12 eV, µ_n=1200 cm²/V-s, µ_p(Si)=480 cm²/V-s, q χ =4.05 eV, N_C=2.8×10¹⁹ cm⁻³, N_V=1.04×10¹⁹ cm⁻³. Ge: ε_r=16.2, n_i=2.4×10¹³ cm⁻³, E_g=0.66 eV, q χ =4.13 eV GaAs: ε_r=12.88, n_i=1.8×10⁶ cm⁻³, E_g=1.42 eV, q χ =4.07 eV Au: ϕ_M = 4.75 eV

Q1.

- (a) Consider an Au/*n*-Si Schottky Junction under thermal equilibrium. Find the electron and hole concentrations in *n*-Si exactly at the interface. Also, find the potential at the interface.
 [5]
- (b) An Au/n-Si (N_d=10¹⁶ cm⁻³) Schottky junction is operated under 5 V reverse bias. How many fold the reverse current will increase due to the Schottky barrier lowering? [5]
- (c) A *n*-channel JFET having t = 1.5 μ m, N_a = 5×10¹⁷ cm⁻³, N_d = 5×10¹⁵ cm⁻³, operating at 3 V gate voltage. Find the particular V_{DS} voltage beyond that the current become saturate. [5]

Q2. The following *n*-type semiconductor is showing non-uniform doping profile as $N(X) = N_0 - \alpha X$. ' α ' is a constant.

Under equilibrium,

- (a) Derive the expression of electric field E(X), $J_{n(diff)}$ and $J_{n(drift)}$. [6]
- (b) Draw the qualitative profile of E(X), $J_{n(diff)}$, $J_{n(drift)}$, and $J_{n(total)}$ as a function of X. [4]
- (c) Show the direction of e- flow, E(X), $J_{n(diff)}$, $J_{n(drift)}$, and $J_{n(total)}$ on the given figure. [2]

Q3. Draw an energy band diagram of a MS junction under thermal equilibrium where metal have the work function of 4.15 eV and the semiconductor (Si) have the donor doping of 2×10^{15} cm⁻³.

(a)	What potential will build up at the junction.	[2]
(b)	What is the electron concentration in Si exactly at the MS interface?	[3]
(c)	Sketch and label energy band diagram of the MS junction.	[3]
(d)	Sketch and label the electric filed distribution for the MS junction.	[3]
(e)	Sketch and label the potential distribution for the MS junction.	[2]

Q4. Sketch and label energy band diagram across a junction of A and B material at room temperature. Material A is Ge doped with 2.4×10^{17} cm⁻³ donor and material B is GaAs is doped with 1.8×10^{10} cm⁻³ acceptor impurity. [7]

- (a) Find built in potential (φ_i) across the junction. Also find individual built in potential of A (φ_iA) and B (φ_iB) side.
- (b) Find depletion depth (X_d) across the junction. Also find individual depletion depth of A (X_{dA}) and B (X_{dB}) side.
 [2]
- (c) Find the capacitance across the junction.

Q5. The general expression of maximum electric field of a *pn* junction has been given below.

$$|E_{max}| = \frac{q}{\epsilon_s} \left[\frac{2\epsilon_s(\varphi_i - V)}{q} \left(\frac{N_a N_d}{N_a + N_d} \right) \right]^{1/2}$$

- (a) Derive an expression of break down voltage (V_{BR}) for a p^+n junction as a function of 'break down critical electric field ($E_{Critical}$)'. Use the above electric field expression to derive V_{BR} . [3]
- (b) Calculate the break down voltage (V_{BR}) if $N_a=5\times10^{17}$ cm⁻³ and $N_d=10^{15}$ cm⁻³. Consider $E_{Critical}=$ 80 kV/cm. [3]

[2]