BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI COMPREHENSIVE EXAMINATION

Semester I: 2022-2023
Part A: Closed Book
MEL G631: Physics and Modelling of Microelectronic Devices
Date: 27/12/2022 Maximum Marks: $\mathbf{3 5}$ Maximum Time: $\mathbf{7 5}$ minutes

```
|| Given (Use, if not specified in the questions):
q=1.6\times1\mp@subsup{0}{}{-19}\textrm{C},\textrm{k}=1.38\times1\mp@subsup{0}{}{-23}\mp@subsup{\textrm{m}}{}{2}\mp@subsup{\textrm{kgs}}{}{-2}\mp@subsup{\textrm{k}}{}{-1},\textrm{T}=300\textrm{K},\textrm{kT}/\textrm{q}=0.026 V, }\mp@subsup{\varepsilon}{0}{}=8.85\times1\mp@subsup{0}{}{-14}\textrm{F}/\textrm{cm
|
|}\mp@subsup{|}{\textrm{C}=2.8\times1\mp@subsup{0}{}{19}\mp@subsup{\textrm{cm}}{}{-3},\mp@subsup{N}{\textrm{V}}{\prime}=1.04\times1\mp@subsup{0}{}{19}\mp@subsup{\textrm{cm}}{}{-3}.}{
|Au: }\mp@subsup{\varphi}{M}{\prime}=4.75\textrm{eV
```

Answer should be very brief and to the point.

Q1. Where is the probability of finding of an electron is exactly half $(1 / 2)$?
Ans:
Q2. Suppose, the probability of occupancy by an electron in conduction band is represented by $f_{D}(E)$. How can we represent the probability of occupancy by a hole in valance band?

Ans:
Q3. If, $E_{C}-E_{F} \gg k T$, write the Fermi function using Maxwell-Boltzmann's distribution.
Ans:

Q4. What do you mean by the charge neutrality in a doped semiconductor? Explain with a suitable expression.

Ans:

Q5 If the effective mass of electron $\left(m_{n}^{*}\right)$ in Si crystal is $0.3 \mathrm{~m}_{0}$, find the thermal velocity $\left(\mathrm{V}_{\mathrm{th}}\right)$ of electron in the same crystal at 300 k .

Ans:

Q6. What is the reason behind the lowering of metal work function in a MS junction under high field application?

Ans:

Q7. What are the criteria for constructing a metal-semiconductor non-rectifying (Ohmic) contact?

Ans:

Q8. How can you define radiative and non-radiative semiconductors? Provide examples for both type of semiconductors.

Ans:

Q9. What is the difference between band to band and Auger recombination for low level injection? Write the expression of carrier life time for both the cases.

Ans:

Q10. Write the expression of multiplication factor in avalanche breakdown and what is the condition for unlimited multiplication?

Ans:

Q11. Why is the reason to maintain equilibrium in semiconductor of a MOS junction under biasing condition?

Ans:

Q12. Draw and label a Q-V characteristic of an ideal MOS junction where n type Si is used as the semiconductor. Indicate the operating conditions i.e. accumulation, depletion and inversion.

Q13. Draw a schematic of a parasitic bipolar transistor formation in an n MOSFET due to impact ionization effect. Also, show the direction of the flow of electron and hole.

Q14. Draw an energy band diagram of a short channel n-MOSFET to show the drain induced barrier lowering (DIBL).

Q15. Draw a qualitative $\mathrm{I}_{\mathrm{D}}-\mathrm{V}_{\mathrm{GS}}$ Ans:
characteristics for p-channel depletion MOSFET.

Q16. A small negative voltage is applied to the bulk terminal of a MOSFET (w.r.t the source).
Tick the correct answer

- Depletion charge (in channel): Increase/Decrease
- Inversion change (in channel): Increase/Decrease
- Threshold voltage: Increase/Decrease

Q17. Consider ' s ' is the scaling factor. For, constant field scaling, write the appropriate scaled parameters. Example: Gate length (L): L/s

- Doping $\left(\mathrm{N}_{\mathrm{A}}\right)$:
[2]
- Propagation delay (τ) :
- Power delay product (P. τ):
- Depletion width $\left(\mathrm{W}_{\mathrm{D}}\right)$:

Q18. Consider a chrome-silicon metal-semiconductor junction where work function of chromium is 4.5 eV and donor doping of silicon is $10^{17} \mathrm{~cm}^{-3}$.
(a) Calculate the barrier height

Ans:
(b) Built-in potential

Ans:
If, 5 V reverse bias voltage is applied to the junction, calculate
(c) Depletion layer width

Ans:
(d) Electric field in the semiconductor at the interface

Ans:
(e) Potential at half of the depletion width Ans:
(f) Capacitance per unit area Ans:

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI COMPREHENSIVE EXAMINATION
 Semester I: 2022-2023
 Part B: Open Book
 MEL G631: Physics and Modelling of Microelectronic Devices

Date: 27/12/2022 Maximum Marks: 45 Maximum Time: $\mathbf{1 0 5}$ minutes

Attempt all the questions.

Q1. In a given n-p junction donor and acceptor concentrations are $1.45 \times 10^{17} \mathrm{~cm}^{-3}$ and $1.45 \times 10^{16} \mathrm{~cm}^{-3}$, respectively. Consider, room temperature (300 k), $\mu_{\mathrm{n}}=1300 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}, \mu_{\mathrm{p}}=480 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}, \tau_{\mathrm{n}}=\tau_{\mathrm{p}}=1 \mu \mathrm{~s}$.

Also consider the physical thickness of n and p both the side as $100 \mu \mathrm{~m}$.
(a) Sketch and label majority and minority carrier concentrations under 0.6 V forward bias. Also find the value of injected minority carriers at the boundary for both the side.
[4]
(b) Calculate $\mathrm{I}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{p}}\right), \mathrm{I}_{\mathrm{p}}\left(-\mathrm{x}_{\mathrm{n}}\right)$ and total current (I) at 0.6 forward bias. Consider cross sectional area of the np junction as $10^{-4} \mathrm{~cm}^{2}$.
(c) Repeat part (a) and calculate $\mathrm{I}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{p}}\right), \mathrm{I}_{\mathrm{p}}\left(-\mathrm{x}_{\mathrm{n}}\right)$ and total current (I) for the physical thickness of n and p both the side as $1 \mu \mathrm{~m}$.
(d) What is the change in total current for $1 \mu \mathrm{~m}$ device as compared to the $100 \mu \mathrm{~m}$ device?
(e) What is the average electron and hole carrier life time of the minority carrier in $1 \mu \mathrm{~m}$ device?

Q2

(a). For an n-channel MOSFET derive the following expression for the channel voltage $[V(y)]$ at the edge of saturation (i.e. pinch off).

$$
V(y)=\left(V_{G S}-V_{T}\right)\left(1-\sqrt{1-\frac{y}{L}}\right)
$$

Where, L is the channel length (or gate length); source end as $\mathrm{y}=0$ and drain end as $\mathrm{y}=\mathrm{L}$. (Hint: Use $I_{D S}=I_{D S A T}$, ignore velocity saturation)
(b). Consider a long channel n-MOSFET with gate width near source end is W and drain end is $\mathrm{W}+(\mathrm{L} / \alpha)$ where, L is the channel length and $\alpha(>1)$ is a constant. Derive a drain current expression in linear and saturation region considering gradual channel approximation approach. (Consider: μ_{n} : Constant mobility and C_{Ox} : Oxide capacitance).

Q3. A schematic of junction filed effect transistor is shown in the figure below. Consider W and L are the width and length of the device. Derive a drain current expression for very small V_{DS}.

Q4. Consider a $\mathrm{n}-\mathrm{channel} \mathrm{n}^{+}$poly- SiO_{2}-Si MOSFET with gate oxide thickness $\left(\mathrm{t}_{\mathrm{ox}}\right)=5 \mathrm{~nm}$, channel length $(L)=0.6 \mu \mathrm{~m}$ and acceptor density $\left(\mathrm{N}_{\mathrm{A}}\right)=2 \times 10^{17} \mathrm{~cm}^{-3}$. Calculate $\mathrm{V}_{\text {DSAT }}$ value with and without gradual channel approximation considering flat band voltage $\left(\mathrm{V}_{\mathrm{FB}}\right)$ as $-1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2 \mathrm{~V}$ and bulk to source voltage $\left(\mathrm{V}_{\mathrm{BS}}\right)$ as zero. Again calculate the $\mathrm{V}_{\text {DSAT }}$ considering velocity saturation where saturated velocity of electron at room temperature $\left(\mathrm{V}_{\mathrm{s}}\right)$ is $10^{7} \mathrm{~cm} / \mathrm{s}$ and electron mobility $\mu_{\mathrm{n}}=450 \mathrm{~cm}^{2} / \mathrm{V}$-s.

Q5. Consider a n-channel n^{+}poly- SiO_{2}-Si MOSFET with gate oxide thickness $\left(\mathrm{t}_{\mathrm{ox}}\right)=5 \mathrm{~nm}$, channel length $(\mathrm{L})=180 \mathrm{~nm}$ and width $(\mathrm{W})=324 \mathrm{~nm}$, acceptor impurity $\left(\mathrm{N}_{\mathrm{A}}\right)=2 \times 10^{17} \mathrm{~cm}^{-3}$ and number of fixed oxide charge $4.92 \times 10^{11} \mathrm{~cm}^{-2}$. Calculate
(a) Threshold voltage
(b) Surface potential at $\mathrm{V}_{\mathrm{GS}}=-334 \mathrm{mV}$
(c) Calculate drain current at $\mathrm{V}_{\mathrm{GS}}=-334 \mathrm{mV}$ considering $\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$ and $\mu_{\mathrm{n}}=500 \mathrm{~cm}^{2} / \mathrm{V}$-s.

