BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

MID-SEMESTER EXAMINATION

Semester I: 2023-2024

Open Book

MEL G631: Physics and Modelling of Microelectronic Devices

Date: 10/10/2023 Maxi

Maximum Marks: 60 Maximum

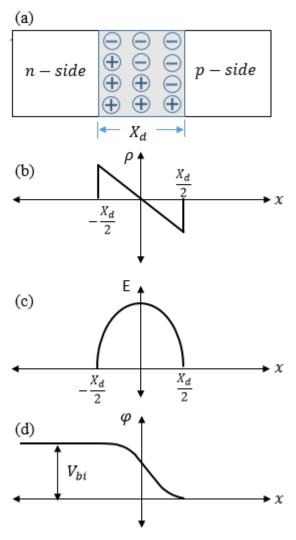
Maximum Time: 90 minutes

Given (Use, if not specified in the questions): $q=1.6 \times 10^{-19} \text{ C}$, $k=1.38 \times 10^{-23} \text{ m}^2 \text{kgs}^{-2} \text{k}^{-1}$, T=300 K, kT/q=0.026 V, $\epsilon_0=8.85 \times 10^{-14} \text{ F/cm}$ Si: $\epsilon_r=11.8$, $n_i=1.45 \times 10^{10} \text{ cm}^{-3}$, $E_g=1.12 \text{ eV}$, $\mu_n=1200 \text{ cm}^2/\text{V-s}$, $\mu_p(\text{Si})=480 \text{ cm}^2/\text{V-s}$, $q\chi=4.05 \text{ eV}$, $N_C=2.8 \times 10^{19} \text{ cm}^{-3}$, $N_V=1.04 \times 10^{19} \text{ cm}^{-3}$. GaAs: $\epsilon_r=12.4$, $E_g=1.424 \text{ eV}$, $q\chi=4.07 \text{ eV}$ Au: $\phi_M=4.75 \text{ eV}$ Consider room temperature (300 k) if not mentioned in the question.

Q1. A *pn* junction, having uniform doping in the *p* and *n* sides, is approximated as a linear junction instead of abrupt junction approximation where the charge concentration changes from most positive value (*n*-type side) to the most negative value (*p*-type side) in the smoothest possible way as shown in the Figure (a) and (b). In the linear *pn* junction, charge concentration [$\rho(x)$] in the depletion layer changes linearly as

$$\rho(x) = -ax$$

Where *a* is the slope of the linear dependency.


(a) Derive the expression of electric field [E(x)] for the Figure (c). [5]

(b) Find the expression of maximum electric field E_{max} at x = 0 (Figure (c)). [2]

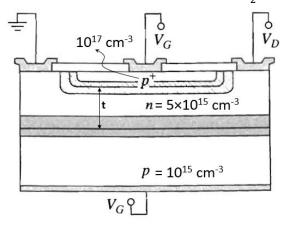
(c) Derive the expression of electric-potential distribution $[\varphi(x)]$ for the Figure (d). [4]

(d) Find the expression of built-in-potential (V_{bi}) as shown in the Figure (d). [2]

(e) Find the expression of depletion layer width (X_d) as a function of V_{bi} . [2]

Q2. For an n-type GaAs/p-type Al_{0.3}Ga_{0.7}As heterojunction at room temperature, $\Delta E_C = 0.21$ eV.

Find the following at room temperature


- (a) Built in potential to the junction. [4]
- (b) Total depletion width/depth. [3]
- (c) Depletion capacitance of the junction. [2]
- (d) Sketch and label energy band diagram of the heterojunction under equilibrium. [6]

Consider, $\chi_{GaAs} > \chi_{Al0.3Ga0.7As}$ **GaAs:** $N_d = 5 \times 10^{15} \text{ cm}^{-3}$, $N_C = N_V = 7 \times 10^{18} \text{ cm}^{-3}$, $E_g = 1.424 \text{ eV}$, dielectric constant = 12.4 **Al_xGa_{1-x}As:** $N_a = 10^{16} \text{ cm}^{-3}$, $E_g(x) = 1.424 + 1.247x \text{ eV}$, dielectric constant = 12.4-3.12x, $N_C = N_V = 4.7 \times 10^{17} \text{ cm}^{-3}$

Q3. A Silicon based JFET is biased with V_G voltage to its gate and bulk terminal both as shown in the figure below. If the channel thickness (t) of the FET is 1.5 μ m, find the followings

- (a) Required minimum V_G to stop the channel at negligibly small V_D . [7]
- (b) Calculate V_{DSAT} if $V_G = -3 V (V_D \text{ is significantly high now})$. [8]

[Hint: Use for part (b); $(1 + x)^{1/2} \approx 1 + \frac{1}{2}x$, when x < 1]

Q4. Consider a n-channel GaAs MESFET has a barrier height (ϕ_B) = 0.9 V, N_D= 10¹⁷ cm⁻³, channel thickness (t) = 0.2 µm, channel length (L) = 1 µm and channel width (W) = 10 µm.

- (a) Determine the device is normally on (depletion type) or normally off (enhancement type) and give proper justification. [4]
- (b) Find the V_{Dsat} value at $V_{GS} = 0$ V and $V_{GS} = -1$ V. [3]
- (c) Find drain current (I_{DS}) and gate terminal current (I_{GS}) when $V_{DS} = V_{DSat}/2$ and $V_{GS} = -1$. [4+4] (Substrate is connected to ground and ignore depletion region between of n-channel and p-substrate) GaAs: $N_C = N_V = 7 \times 10^{18}$ cm⁻³, dielectric constant = 12.4, $\mu_n = 20\mu_p = 8000$ cm²/V-s

-----END-----