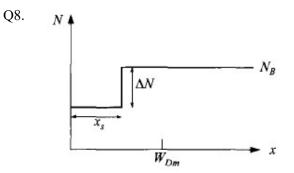
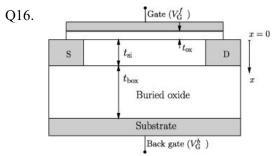

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI COMPREHENSIVE EXAMINATION Semester I: 2023-2024 Part A: Closed Book MEL G631: Physics and Modelling of Microelectronic Devices


Date: 08/12/2022	Maximum Marks: 40	Maximum Time: 90 minutes
Given (Use, if not specified in the quadratic q=1.6×10 ⁻¹⁹ C, k=1.38×10 ⁻²³ m ² kgs ⁻¹ Si: ε_r =11.8, n _i =1.45×10 ¹⁰ cm ⁻³ , Eg=1 N _C =2.8×10 ¹⁹ cm ⁻³ , N _V =1.04×10 ¹⁹ cm ⁻¹ Au: ϕ_M = 4.75 eV	uestions): ${}^{2}k^{-1}$, T=300 K, kT/q=0.026 V, ϵ_{0} =8. .12 eV, μ_{n} =1300 cm ² /V-s, μ_{p} (Si)=4	.85×10 ⁻¹⁴ F/cm

Answer should be very brief and to the point.

- Q1. What is the probability of finding of an electron at the conduction band $[f(E_c).]$ of pure [2] Silicon at 20°C ? Ans:
- Q2. Consider a P^+n junction, where N_D is tripled. If everything else remains same, how do the [2] parameters listed below change. Tick the correct answer.
 - (a) Depletion capacitance: Increase / Decrease
 - (b) Built-in potential: Increase / Decrease
 - (c) Breakdown voltage: Increase / Decrease
 - (d) Ohmic losses: Increase / Decrease
- Q3. For a Si p-n junction, $N_A=N_D=10^{17}$ cm⁻³. Find the applied revise bias voltage when [2] maximum electric field will be 5×10⁵ V/cm. (T = 300 k) Ans:

- Q5 Write the continuity equation for electron while electric filed is constant. Ans:
- Q6. What is preferred for less shift of the threshold voltage due to effect of body bias potential [1] (or body effect). Tick the correct answer.
 - (a) High/ Low substrate doping (N_A)
 - (b) Thick/ Thin oxide thickness (tox)
- Q7. For a sharp subthreshold slope (small S), what will be the preferable combinations. Tick [2] the correct response:
 - (a) High / Low channel doping,
 - (b) Thick / Thin oxide thickness,
 - (c) High / Low interface-trap density
 - (d) High/ Low substrate bias voltage.


If the given non-uniform doping profile is used [1] instead of a uniform doping profile for a MOSFET, what will be change in depletion width and threshold voltage. Tick the correct response.

- (a) Depletion width will increase / decrease
- (b) Threshold voltage will increase /decrease
- Q9. Draw a schematic of a short channel MOSFET to indicate the charge sharing effect. [2] Ans:

- Q10. What is the reason behind the faster operation in SOI MOSFET as compared to the [2] conventional bulk MOSFET? Ans:
- Q11. An n-channel MOSFET having oxide thickness of 4 nm, substrate doping of 5×10¹⁶ cm⁻³, [2] and flat band voltage of -1.1 V. Calculate the particular gate to source voltage (V_{gs}) where immediate oxide breakdown can possible at the starting of strong inversion. (Breakdown strength of SiO₂ is 18 MV/cm). Ans:

[2]

- Q12. Consider an ideal MOS capacitor Ans: having n-type Si substrate. Draw the qualitative carrier (hole and electron) distribution profile under week inversion.
- Q13. Draw an energy band diagram of Ans: SiO_2/Si system to indicate the band offset of ~3.1 eV.
- Q14. Draw a schematic of floating body Ans: in a n-channel partially depleted (PD) SOI MOSFET. Clearly indicate the all the capacitance and pn junction diodes.
- Q15. Sketch and label the transfer Ans: characteristics (I_D vs V_{GS}) of a n-channel **buried** device (MOSFET).

Q17. Consider 's' is the scaling factor. For, constant field scaling, write the appropriate scaled parameters. Example: Gate length (L): L/s Write the expressions of all three capacitances used [3] in threshold voltage expression of the given FD-SOI-MOSFET.

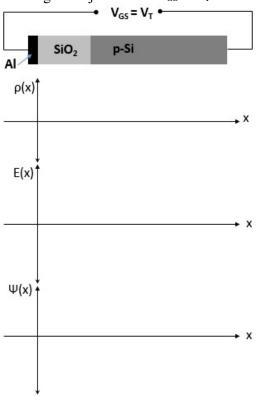
- Doping (N_A):
- Propagation delay (τ):
- Power delay product (P. τ):
- Subthreshold slope (S):

P.T.O.

[2]

[2]

[2]


[2]

[2]

Q18. Draw an energy band diagram of a short channel n-MOSFET to indicate the drain voltage [2] induced barrier lowering.

[2]

Q20. Draw the charge (ρ), electric filed (E) and potential (ψ) distribution pattern for the [3] following MOS junction at V_{GS} = V_T. Consider the MOS junction is ideal one.

-----End-----

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

COMPREHENSIVE EXAMINATION

Semester I: 2023-2024

Part B: Open Book

MEL G631: Physics and Modelling of Microelectronic Devices

Date: 08/12/2022Maximum Marks: 40Maximum Time: 90 minutes

Given (Use, if not specified in the questions): $q=1.6\times10^{-19}$ C, $k=1.38\times10^{-23}$ m²kgs⁻²k⁻¹, T=300 K, kT/q=0.026 V, $\epsilon_0=8.85\times10^{-14}$ F/cm **Si:** $\epsilon_r=11.9$, $n_i=1.45\times10^{10}$ cm⁻³, $E_g=1.12$ eV, $\mu_n=1300$ cm²/V-s, $\mu_p(Si)=480$ cm²/V-s, $q\chi=4.05$ eV, $N_C=2.8\times10^{19}$ cm⁻³, $N_V=1.04\times10^{19}$ cm⁻³. **SiO**₂: $\epsilon_r=3.9$

Attempt all the questions.

Q1.

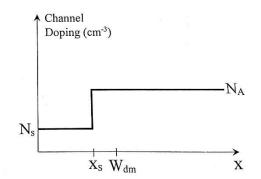
(a) Sketch and label the energy band diagram of a Metal-Silicon (M-S) junction under thermal equilibrium at 300 K. Consider, metal work function 4.1 eV, donor doping in Silicon as 5×10^{16} cm⁻³. Comment on the type of the junction. [5]

(b) Given acceptor profile $N_A(x)=N_0e^{-ax}$. Sketch and label following quantities with respect to 'x'.

(i) Diffusion current (J_{pdiff}) [2]

(ii) Drift current (J_{pdrift}) [1]

(iii) Electric filed (E_x) [2]

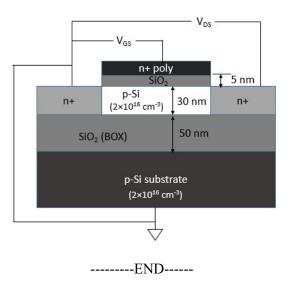

Q2. An abrupt p^+n silicon junction (long base) having 10^{-4} cm² cross section with following information

p ⁺ side	n side
$N_A = 10^{17} \text{ cm}^{-3}, \tau_n = 0.1 \mu\text{s}$	$N_D = 10^{15} \text{ cm}^{-3}, \tau_p = 10 \mu\text{s}$
$\mu_p = 200 \text{ cm}^2/\text{V-s}, \ \mu_n = 700 \text{ cm}^2/\text{V-s}$	$\mu_n = 1300 \text{ cm}^2/\text{V-s}, \ \mu_p = 450 \text{ cm}^2/\text{V-s}$

At a particular bias, current is measured as 1 mA.

- (a) Find the applied bias voltage [5]
- (b) Find I_p hole current at $x = x_n$ [2]
- (c) Also, find in (electron current) at $x = x_n [1]$
- (d) Sketch the hole and electron current of the p^+n junction under forward bias. [2]

Q3. Consider an n-channel MOSFET with n⁺ polysilicon gate. Gate oxide thickness is 7 nm, fixed oxide charge 5×10^{10} cm⁻² and p-type body has a step (non-uniform) doping (N_A>>N_S) as shown in the figure below. Write the threshold voltage expression considering the approximation N_S \approx 0 and find the value of X_s and N_A when threshold voltage is 0.3 V and corresponding surface potential ($\Psi_{\rm S}=2\Psi_{\rm B}$) as 1 V. Also, calculate the maximum depletion width (W_{dm}). **[10]**


Q4. Consider interface charges $Q_f/q=5\times10^{11}$ cm⁻² (applicable for front and back both the interfaces)

(a) Show the type of the device i.e. FD or PD SOI. [2]

(b) Find the back surface potential (Ψ_{sb}). Also, comment on the condition of the back interface (i.e. accumulation, depletion or inversion). [4]

- (c) Find accurate front gate threshold voltage of the SOI MOSFET. [3]
- (d) Find body factor (n) of the device and estimate V_{DSAT} for applied $V_{GS}=1$ V. [1]

(Hint: Consider the flat band voltage in the calculation)

