Department of EEE, BITS PILANI K. K. BIRLA GOA CAMPUS

Mid-Semester Question Paper – Analog IC Design (MEL G 632)

Date: 18-03-2023		Time: 11:00 hours to 12:30 hours		
Duration: 90 minutes	Closed Book	Full-Marks: 25		

Attempt All Questions. Please use the ⁱTable given at the end to select appropriate values wherever they are not given in the question.

1. (a) Assume that V_{DD} varies from 4V to 6V and $V_{SS} = 0$ in Fig. 1(a). Assume due to process variation, $k'_{n/p}$, V_{thn} and $|V_{thp}|$ also vary and can be estimated by $k'_n = 110\pm10\%$, $k'_p = 50+10\%$, $V_{thn} = |V_{thp}| = (0.7\pm0.15)$ V. If $I_{SS} = 100 \ \mu A$, $\left(\frac{W}{L}\right)_{1,2} = 5$, $\left(\frac{W}{L}\right)_{3,4} = 1$ and drop across $V_{DS-MS} = 0.2$ V. Include worst case variation to calculate input common-mode range. Ignore L-diffusion, body effect and channel lengh modulation.

(b) In the Fig. 1(b), what is the value of I_1 , I_2 and I_3 ? Given $\lambda = 0.1V^{-1}$, threshold voltage = 0.5 V and overdrive = 0.2 V for all the devices, while $V_{DD} = 1.8$ V. Further $V_x = 0.3V$ and $I_0 = 1$ mA. All the devices have same channel length. Assume $\lambda V_{DS} <<1$ for all the devices and neglect 2^{nd} and higher order terms of λ .

2. Design the circuit of Fig. 2 for a voltage gain of |20| and a power budget of 1 mW with V_{DD} = 1.8 V. Assume M_1 operates at the edge of saturation if the input common-mode level is 1 V. Also, $\mu_n C_{ox} = 2\mu_p C_{ox} = 100 \ \mu A/V^2$, $V_{THn} = 0.5 \ V$, $V_{THp} = -0.4 \ V$, $\lambda_p = 2\lambda_n = 0.1V^{-1}$. Take $L_{geo} = 1\mu m$ (neglect L-diffusion).

3+3= 6-marks

3. If I₁ = 1mA, I₂ = 750 μ A, 2 × $\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_{1,2} = \frac{5\mu m}{0.5\mu m}$ in Fig. 3, find R_{out} and voltage gain without using any approximation. Consider channel length modulation, L-diffusion and assume g_{mb} = 0.1g_m.

3+2= 5-marks

4. Find RMS noise voltage of a 1/f noise source with $\overline{V}_n(f)^2 = (50 \ nV)^2/f$, over the range of frequency from 1 hz to 100 Mhz. What is the RMS noise voltage if the lower limit of the frequency is reduced to 10 *nHz*? Give your answer in μ *V* in both cases.

2+2= 4-marks

ⁱ Table of Values							
Parameters	$V_{Th}(V)$	$\gamma(\sqrt{V})$	$\phi_f(V)$	$L_{D}(m)$	$\lambda(V^{-1})$ for L _{Geo} =0.5 μ m	$\dot{k_{n/p}} = \mu_{n/p} C_{OX} (A/V^2)$	
NMOS	0.7	0.5	0.9	0.08×10^{-6}	0.1	134.26×10^{-6}	
PMOS	-0.8	0.4	0.8	0.09×10^{-6}	0.2	38.36×10^{-6}	
$n_{i} = 1.45 \times 10^{10} cm^{-3}, q = 1.6 \times 10^{-19} C; k = 1.38 \times 10^{-23} \frac{J}{K}; V_{DD} = V_{Ck} = 3.0V; V_{SS} = 0 \text{ V}; \beta_{NPN} = 150, \beta_{PNP} = 100, k = 1.38 \times 10^{-23} \frac{J}{K}; V_{DD} = V_{Ck} = 3.0V; V_{SS} = 0 \text{ V}; \beta_{NPN} = 150, \beta_{PNP} = 100, k = 1.38 \times 10^{-23} \frac{J}{K}; V_{DD} = V_{Ck} = 3.0V; V_{SS} = 0 \text{ V}; \beta_{NPN} = 150, \beta_{PNP} = 100, k = 1.38 \times 10^{-13} \frac{J}{K}; V_{DD} = V_{Ck} = 3.0V; V_{SS} = 0 \text{ V}; \beta_{NPN} = 150, \beta_{PNP} = 100, k = 1.38 \times 10^{-13} \frac{J}{K}; V_{DD} = V_{Ck} = 3.0V; V_{SS} = 0 \text{ V}; \beta_{NPN} = 150, \beta_{NPN} = 100, k = 1.38 \times 10^{-13} \frac{J}{K}; V_{DD} = V_{Ck} = 3.0V; V_{SS} = 0 \text{ V}; \beta_{NPN} = 150, \beta_{NPN} = 100, k = 1.38 \times 10^{-13} \frac{J}{K}; V_{DD} = 1.08 \times 10^{-13} \frac{J}$							
Common	Common Room Temperature = $27^{\circ}C$; ε_{si} =11.68; ε_{sio_2} =3.6; ε_0 = 8.85 × $10^{-12}\frac{F}{m}$; $C_{GDO_{NMOS}} = 0.4 \times 10^{-9}\frac{F}{m}$; C_{ox} =6.9 fF/ μ m ²						
	for $t_{ox} = 50\dot{A}$						

Table of Equations (<i>You might have seen in a distant galaxy)</i>				
1.	$I_D = \frac{1}{2}\mu_{n/p}C_{OX}\left(\frac{W}{L}\right)(V_{GS} - V_T)^2; I_D = \frac{1}{2}\mu_{n/p}C_{OX}\left(\frac{W}{L}\right)(V_{GS} - V_T)^2(1 + \lambda V_{DS})$ when channel length is included			
2.	$\phi_0 = rac{kT}{q} ln\left(rac{N_D N_A}{{n_i}^2} ight)$			
3.	$Q_{B0} = -\left(1 - rac{\Delta L_S + \Delta L_D}{2L} ight) \sqrt{2q\epsilon_{Sl}N_A 2\Phi_F }$			
4.	$C_{j0} = \sqrt{\frac{q\epsilon_{Sl}}{2} \left(\frac{N_D N_A}{N_D + N_A}\right) \frac{1}{\Phi_0}}$			
5.	$\Delta V_{T0} = \frac{1}{C_{ox}} \sqrt{2q\xi_{Si}N_A 2\Phi_F } \cdot \frac{x_j}{2L} \cdot \left[\left(\sqrt{1 + \frac{2x_{dS}}{x_j}} - 1 \right) + \left(\sqrt{1 + \frac{2x_{dD}}{x_j}} - 1 \right) \right]$			
6.	$x_d = \sqrt{\frac{q\epsilon_{Si}}{2} \left(\frac{N_D N_A}{N_D + N_A}\right) \left(\Phi_0 - V\right)}$			