Department of EEE, BITS PILANI K. K. BIRLA GOA CAMPUS
 Mid-Semester Question Paper - Analog IC Design (MEL G 632)

Date: 18-03-2023
Time: 11:00 hours to 12:30 hours
Duration: 90 minutes
Closed Book
Full-Marks: 25
Attempt All Questions. Please use the 'Table given at the end to select appropriate values wherever they are not given in the question.

1. (a) Assume that V_{DD} varies from 4 V to 6 V and $\mathrm{V}_{\mathrm{SS}}=0$ in Fig. 1(a). Assume due to process variation, $k_{n / p}^{\prime}, \mathrm{V}_{\mathrm{thn}}$ and $\left|\mathrm{V}_{\mathrm{thp}}\right|$ also vary and can be estimated by $\dot{k}_{n}=110 \pm 10 \%, \dot{k}_{p}=\mathbf{5 0}+10 \%$, $\mathrm{V}_{\text {thn }}=\left|\mathrm{V}_{\text {thp }}\right|=(0.7 \pm 0.15) \mathrm{V}$. If $\mathrm{I}_{\mathrm{SS}}=100 \mu \mathrm{~A},\left(\frac{W}{L}\right)_{1,2}=5,\left(\frac{W}{L}\right)_{3,4}=1$ and drop across $\mathrm{V}_{\mathrm{DS}-\mathrm{M} 5}=$ 0.2 V . Include worst case variation to calculate input common-mode range. Ignore Ldiffusion, body effect and channel lengh modulation.
(b) In the Fig. $1(b)$, what is the value of I_{1}, I_{2} and I_{3} ? Given $\lambda=0.1 V^{-1}$, threshold voltage $=0.5$ V and overdrive $=0.2 \mathrm{~V}$ for all the devices, while $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$. Further $\mathrm{V}_{\mathrm{x}}=0.3 \mathrm{~V}$ and $\mathrm{I}_{0}=1$ mA . All the devices have same channel length. Assume $\lambda \mathrm{V}_{\mathrm{DS}} \ll 1$ for all the devices and neglect $2^{\text {nd }}$ and higher order terms of λ.

$4(=1+1+2)+3 \times 2=10-$ marks
2. Design the circuit of Fig. 2 for a voltage gain of $|20|$ and a power budget of 1 mW with V_{DD} $=1.8 \mathrm{~V}$. Assume M_{1} operates at the edge of saturation if the input common-mode level is 1 V. Also, $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=2 \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{THn}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{THp}}=-0: 4 \mathrm{~V}, \lambda_{\mathrm{p}}=2 \lambda_{\mathrm{n}}=0.1 \mathrm{~V}^{-1}$. Take $\mathrm{L}_{\text {geo }}=$ $1 \mu \mathrm{~m}$ (neglect L-diffusion).

3+3=6-marks
3. If $\mathrm{I}_{1}=1 \mathrm{~mA}, \mathrm{I}_{2}=750 \mu \mathrm{~A}, 2 \times\left(\frac{W}{L}\right)_{3}=\left(\frac{W}{L}\right)_{1,2}=\frac{5 \mu \mathrm{~m}}{0.5 \mu \mathrm{~m}}$ in Fig. 3, find $\mathrm{R}_{\text {out }}$ and voltage gain without using any approximation. Consider channel length modulation, L-diffusion and assume $g_{m b}=0.1 g_{m}$.
4. Find RMS noise voltage of a $1 / f$ noise source with $\bar{V}_{n}(f)^{2}=(50 n V)^{2} / f$, over the range of frequency from $1 \mathbf{h z}$ to 100 Mhz . What is the RMS noise voltage if the lower limit of the frequency is reduced to 10 nHz ? Give your answer in $\mu \mathrm{V}$ in both cases.

Parameters	$\mathrm{V}_{\mathrm{Th}}(\mathrm{V})$	$\gamma(\sqrt{V})$	$\phi_{f}(\mathrm{~V})$	$\mathrm{L}_{\mathrm{D}}(\mathrm{m})$	$\begin{gathered} \lambda\left(\mathrm{V}^{-1}\right) \text { for } \\ L_{G e o}=0.5 \mu \mathrm{~m} \end{gathered}$	$k_{n / p}^{\prime}=\mu_{n / p} C_{O X}\left(\mathrm{~A} / \mathrm{V}^{2}\right)$
NMOS	0.7	0.5	0.9	0.08×10^{-6}	0.1	134.26×10^{-6}
PMOS	-0.8	0.4	0.8	0.09×10^{-6}	0.2	38.36×10^{-6}
Common	$\begin{gathered} n_{i}=1.45 \times 10^{10} \mathrm{~cm}^{-3}, q=1.6 \times 10^{-19} C ; k=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}} ; V_{D D}=V_{C k}=3.0 \mathrm{~V} ; V_{S S}=0 \mathrm{~V} ; \beta_{N P N}=150, \beta_{P N P}=100, \\ \text { Room Temperature }=27^{0} C ; \varepsilon_{S i}=11.68 ; \varepsilon_{S i O_{2}}=3.6 ; \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}} ; C_{G D O_{N M O S}}=0.4 \times 10^{-9} \frac{\mathrm{~F}}{\mathrm{~m}} ; C_{o x}=6.9 \mathrm{fF} / \mu \mathrm{m}^{2} \\ \text { for } t_{o x}=50 \dot{A} \end{gathered}$					

Table of Equations (You might have seen in a distant galaxy....)

1.	$I_{D}=\frac{1}{2} \mu_{n / p} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right)^{2} ; I_{D}=\frac{1}{2} \mu_{n / p} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)$ when channel length is included
2.	$\phi_{0}=\frac{k T}{q} \ln \left(\frac{N_{D} N_{A}}{n_{i}{ }^{2}}\right)$
3.	$Q_{B 0}=-\left(1-\frac{\Delta L_{S}+\Delta L_{D}}{2 L}\right) \sqrt{2 q \epsilon_{S i} N_{A}\left\|2 \Phi_{F}\right\|}$
4.	$C_{j 0}=\sqrt{\frac{q \epsilon_{S i}}{2}\left(\frac{N_{D} N_{A}}{N_{D}+N_{A}}\right) \frac{1}{\Phi_{0}}}$
5.	$\Delta V_{T 0}=\frac{1}{C_{o x}} \sqrt{2 q \xi_{S i} N_{A}\left\|2 \Phi_{F}\right\| \cdot \frac{x_{j}}{2 L} \cdot\left[\left(\sqrt{1+\frac{2 x_{d S}}{x_{j}}}-1\right)+\left(\sqrt{1+\frac{2 x_{d D}}{x_{j}}}-1\right)\right]}$
6.	$x_{d}=\sqrt{\frac{q \epsilon_{S i}}{2}\left(\frac{N_{D} N_{A}}{N_{D}+N_{A}}\right)\left(\Phi_{0}-V\right)}$

