BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, RAJASTHAN
 II SEMESTER, 2022-2023
 MID-SEM TEST CLOSED- BOOK (17 MARCH. 2023, 11am-12.30 pm))
 MEL G632
 ANALOG I.C. DESIGN

TIME - 90 mins.
MAX. MARKS=25

Justify your answers, use only standard symbols. TOTAL 3 Questions
NOTE:
\checkmark Symbols have their usual meaning. Answers should be clear, concise and legible. Specify your assumptions clearly.
\checkmark No marks for unnecessary theoretical explanations. Marks will be deducted for calculation mistakes.
\checkmark Take (for 0.5 micron technology, assume long channel MOSFET equations are valid)
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~L}_{\mathrm{min}}=1 \mathrm{um}$
NMOS --- $V_{T N}=0.7 \mathrm{~V} \quad \gamma=0.45 \sqrt{ } \mathrm{~V} \quad \mathrm{~K}^{\prime}=\mu_{\mathrm{N}} \mathrm{C}_{\mathrm{ox}}=140 \mu \mathrm{~A} / \mathrm{V}^{2} \quad \lambda=0.1 \mathrm{~V}^{-1}$
PMOS---- $V_{\text {TP }}=-0.7 \mathrm{~V} \quad \gamma=0.4 \sqrt{ } \mathrm{~V} \quad \mathrm{~K}^{\prime}=\mu_{\mathrm{P}} \mathrm{C}_{0 \mathrm{x}}=40 \mu \mathrm{~A} / \mathrm{V}^{2} \quad \lambda=0.1 \mathrm{~V}^{-1}$
Unless necessarily required or specified in the question.
-assume $\gamma=\lambda=0$ in drain current analysis. Bulk terminal of all NMOS/ PMOS connected to ground/ Vdd Assume matching of devices and operating in saturation region wherever required

Q1. Consider the block level diagram of a 2 stage amplifier with active load circuit shown in Fig. 1.

Given $=D C$ current $I_{B}($ of stage -1$)=50 \mathrm{uA} . \quad$ Vin $=1.5 \mathrm{~V}+5 \mathrm{mV}$ sinwt, Vov=0.2 V, Vout $(\mathrm{DC})=0.7 \mathrm{~V}$
Required dynamic specifications of amplifier--- Rin $>100 \mathrm{M} \Omega$, Rout $\leq 1 \mathrm{~K} \Omega, \mid$ Avo $\mid=($ vout $/ \mathrm{vin}) \geq 100$,
a) Based on data given, write the name of stage-1 and stage-2 of the given amplifier .
b)Sketch and label the complete schematic of the entire circuit. Clearly mark stage- 1 and stage- 2 in you diagram. Also specify matched transistor pair/s.

Fig. 1
c) Determine the value of bias current of second stage of amplifier.
d) Write values of DC voltages at every node in circuit of part (b)
e) Determine the value of $A v$ (with load) $=$ (vout/ vin)

Q2.Consider the circuit shown in Fig. 2.

Given Vov. $=0.2 \mathrm{~V}$. Assume matching of differential arms in the circuit. .
Iss (basic current mirror circuit) $=100 \mathrm{uA}=2 \mathrm{I}_{\mathrm{D}, 5,6}$
Vid $=\operatorname{vin} 1-\mathrm{vin} 2=10 \mathrm{mV}$ sinwt +1.7 V ,
Vod= vout1- Vout2

a) Identify the type of amplifier in Fig. 2
b) Determine small signal voltage gain $\boldsymbol{A}_{\boldsymbol{d} \boldsymbol{m}}=\left(\frac{\boldsymbol{v}_{\boldsymbol{o}}}{\boldsymbol{v}_{\boldsymbol{i} \boldsymbol{d}}}\right)$ in dB
c) Modify the following equation , in case of mismatch in differential arms, in terms of differential input only.

Given Input vin1 $=$ vin2 $=$ vicm remains equal.

$$
v_{o d}=A_{d m} v_{i d}+A_{c m} v_{i c m}
$$

d) If trans-conductance of only M5 and M6 transistors get 2% mismatch during fabrication such that $\left|\mathbf{g}_{\mathbf{m} \mathbf{5}}\right| \neq\left|\mathbf{g}_{\mathbf{m} \mathbf{6}}\right|$. Determine the value of $\mathbf{g}_{\mathbf{m}, \text { nominal }}$ and $\boldsymbol{\Delta} \mathbf{g}_{\mathbf{m}}$
e) For part (d), calculate the value of \mid vod \mid due to mismatch. Here, assume ro5= ro6 in calculations.

Hence calculate $|\mathbf{A c m}|_{\text {diff }}$ in part (d). Given Input vin1 $=\mathbf{v i n} \mathbf{2}=\mathbf{v i c m}$ remains same.

Q3.Answer the following. Justify with reason/s .
a) The intrinsic gain of a MOSFET does not change with change in bias current. Why?
b)Source degeneration of a MOSFET increases its dynamic resistance. Why?
c) In cascode amplifier, cascode transistor is replaced by a passive resistor R. Write the voltage gain expression intuitively.
d) What is the significance of figure of merit $\left\{g_{m} / I_{D}\right\}$ of MOSFET amplifier

