Birla Institute of Technology and Science, Pilani					
	MEL G632 Analog	g Integrated Circuit	Design		
	Comprehensive Examin	ation, II Semester 2	2021-2022		
Times 190	OPEN BOOK Mar Marka 40		Data: 12 05	Data: 12.05.2022	
Time: 180 min.	Max. r	лагкѕ=40	Date: 12-05-2	2022	
<u>Total <mark>5</mark> questions.</u>					
Unless given specifica	lly				
Take $V_{DD} = 3.5 V, I$	umin= 1 um				
For NMOS device	$\mu_n Cox = 140 \ \mu A/V^2, V_T$	$= 0.7 \text{ V}, \lambda = 0.0$	5 V ⁻¹ , Vov=0.2 V.		
For PMOS device	$\mu_{\rm r} Cox = 40 \ \mu A/V^2 \ V_{\rm T}$	$= -0.7 \text{ V} \lambda = 0.0$	V^{-1} Vov=0.2 V		
		- 0.7 , 7, 70.0	<i>is i i i i i i i i i i</i>		
For NPN/ PNP device	$\beta=30$ V, V _{CE,SAT} =0.2V, V	$V_{A} = 100V, kT/q =$	= 25mV(at room temp.),		
	$I_{s}=10^{-14} A, V_{BE,ON}=0.6$	oV, α≈1			
NOTE:		-			
If not specified	in question				
• Ignore λ in dra	in current equation. Negled	ct body bias effe	ct in calculations		
• Bulk of nmos	connected to ground and	bulk of pmos	connected to V_{dd} .	Specify your	
assumptions. Ju	stify your answers.	±			

- Unless specified, assume all MOSFET are biased in active region
- All symbols have usual meaning. Assume matching in the circuit wherever required

Answer all the sub-parts of a question in sequence and one place only. Clearly show the procedure used to arrive at the answer for full credit. Report the answers with proper units.

Q 1. Answer the following in brief with proper justification--- take current sources as

nearly ideal.

- *a*) For Fig. 1a--- determine minimum DC voltage required at node Vout.
- **b**) Re-design the schematic (CSA part) of Fig. 1a to obtain Vout $_{DC, MIN} = 2$ Vov.
- *c*) Derive the expression of [Vx/Ix] in Fig. 1b
- *d*) In Fig. 1c, Sketch and label *Vout versus Vin* as Vin varies from 0 to Vdd. Mark important transition points
- *e*) Intuitively, write the expression for differential mode gain (Adm), and common mode gain (Acm) for Fig. 1d with and without mismatch in R1, and R2 only.

[10 marks]

Q 2. Consider the amplifier circuit given in Fig. 2. All transistors operate in active region.Matched devices-(M2, M3, M4, M5)

Given dc current Iref= I4, Rd \Rightarrow very large (∞)

- a) Determine the value of the intrinsic voltage gain of M1
- b) Determine low-frequency small signal output impedance 'Rout' of the amplifier, and dynamic output voltage swing
- c) Determine the value of maximum small signal voltage gain (Vout/ Vin) and transit frequency (ω_t) of amplifier. Here, Take Cox= 0.4 pF/um².

[8 marks]

Q 3. Consider the circuit shown in Fig. 3. Assume all transistors operate in active region and have Vov.= 0.2 V. I9=I7=75 uA, At nodes, x and out, given—Cx, y = Cout= 6 pF
Matched Pairs: (M1, M2), (M3, M4), (M5, M6), (M7, M9), (M8, M10)

a) Determine the magnitude of low-frequency ac voltage gain $A_{vo} = \frac{V_{out}}{V_{in}}$ and dc voltage at node Vout.

- b) Determine the magnitude of only dominant pole/s and ω_{-3dB} . Hence calculate, gain crossover frequency (Gx). Also, determine if the amplifier is stable or not for maximum feedback closed loop condition. Neglect any non-dominant zero / pole frequency
- c) Now, determine the value of the Miller compensation capacitor (C_c) required to obtain a phase margin of 60 degrees for maximum feedback closed loop condition.

[15 marks]

Q 4. In Fig. 4,

- a) Identify all capacitances (including parasitics) that will appear at node Vout. Hence, write the expression of complete Cout.
- b) Modify the circuit of Fig. 4 to generate a negative capacitance at node Vout to reduce pole frequency at node Vout. While modifying, ensure not to change low-frequency voltage gain.

[4 marks]

- **Q 5.** Design a common mode feedback circuit (CMFB) for the amplifier of Fig. 5 to obtain dc voltage at node Vx, y = 1.8 V.
 - a) Sketch and label the complete circuit with CMFB in place.
 - b) Determine the required dc current through (M5, M6) (with CMFB circuit in place) for the loop to be stable with Gx < 1000 rad./ sec. Here take load capacitor $C_L = 5$ pF value present at the output/s of the circuit.

[5 marks]

*** End ***