Birla Institute of Technology and Science, Pilani

Mid-semester examination

Data management & warehousing MPBA G506 Total marks: 50 (Closed-book examination) Time: 4:00 pm - 5:30 pm (90 minutes) *Attempt all questions*

1 For the following statements, write True/False as your answer.

5

5

1.1 Self Joins can be performed when there is unary relationship between entities

1.2 Together, a prime and non-prime attribute determine a non-prime attribute is a violation of the third Normal Form (3NF)

1.3 ON DELETE CASCADE is used to delete tuples of only one relation

1.4 In the E-R diagram, derived attributes are represented with braces '{}' inside the entity

1.5 Crow's-foot notation is not used as a notation for mapping cardinality.

2 Fill in the blanks for the following statements

2.1 In a situation where an attribute that is part of the candidate key can determine a non-prime attribute is a violation of _____ Normal Form (____NF).

2.2 Relationships treated as higher-level entities in an ER diagram is known as

2.3 The PIN code is a fixed-length six-digit attribute with only specific permitted values, which is also known as ______ of that attribute.

2.4 From the security point of view, two-tier database architecture is ______ secure compared to three-tier database architecture.

2.5 The all-or-none requirement in a relation field is known as ______.

3 For the relation R (A, B, C, D, E) Calculate the normal form FD: { $E \rightarrow A, A \rightarrow BC, CD \rightarrow E, B \rightarrow D$ } 4 Match the following

4.1 Primary key	a.	Belongs to the referenced relation	
4.2 Super key	b.	b. Represented using a two-headed arrow	
4.3 Foreign key	C.	Represented using double ellipses in the ER diagram	
4.4 Referential integrity constraint	d.	Superset of candidate key attributes	
4.5 Multi-valued attribute	e.	Belongs to referencing relation	

5 Match the following

5.1 Select operator	a. ×	A. Modifies the name of attributes/relations
5.2 Project operator	b. σ	B. Filters the attributes
5.3 Cartesian operator	ς. ρ	C. Requires a predicate
5.4 Rename operator	d. П	D. Adds spurious tuples in output relation
5.5 Join operator	e. ⋈	E. Filters the tuples

- 6 Write only one major difference between (one/two-liners only)
 - 6.1 varchar (n) and nvarchar (n) data types
 - 6.2 Primary key and unique key
 - 6.3 SQL's delete and drop statement
 - 6.4 Total and partial participation
 - 6.5 Overlapping and disjoint specialization
- 7 Write executable and valid SQL code for the following queries for the preexisting 5 student table. (As succinct as possible)
 7.1 Fetch student_id and only show missing values.
 7.2 Show the student_id, team_name, and marks of students sorted as per their team_name of those students who scored more than 70 marks.
 7.3 Delete the tuples where marks are less than 60.
 - 7.4 Increase the student marks by +1 if marks <100 (Use update statement) 7.5 Display the student_name of the students where the name contains 'esh'
- Briefly explain in only one statement the following Database system concepts. (One/Two-liners only)
 - 3.1 Compatible relations
 - 3.2 Imperative programming
 - 3.3 Physical schema
 - 3.4 Data dictionary
 - 3.5 Composite candidate key

5

5

5

5

9 For the relation R (A, B, C, D, E) Calculate the Minimal cover FD: { $A \rightarrow B$, $AB \rightarrow C$, $D \rightarrow ACE$ }

year	semester	course_id
2017	Fall	FIN-102
2018	Spring	FIN-112
2018	Fall	CS-121
2017	Spring	MU-123
2018	Fall	CS-315
2017	Fall	CS-319
2018	Fall	MU-192
2017	Spring	PHY-311
2018	Spring	FIN-102
2018	Fall	PHY-311

10 For the following section table

Show the output relation as per the following relational algebra queries.

- 1. Π_{course_id} (σ_{semester} ="Fall" ∧ _{year=2017} (section)) ∪ Π_{course_id} (σ_{semester} ="Spring" ∧ _{year=2018} (section))
- 2. $\Pi_{\text{course_id}} (\sigma_{\text{semester = "Fall"}} \land_{\text{year=2017 (section)}}) \cap \Pi_{\text{course_id}} (\sigma_{\text{semester = "Spring"}} \land_{\text{year=2018 (section)}})$
- 3. Π_{course_id} (σ_{semester ="Fall"} ∧ _{year=2017} (_{section})) − Π_{course_id} (σ_{semester} ="Spring" ∧ _{year=2018} (_{section}))
- 4. Π_{course_id} (σ_{semester ="Fall"} ∧ _{year=2018} (_{section})) ∪ Π_{course_id} (σ_{semester ="Spring"} ∨ _{year=2017} (_{section}))
- 5. $\Pi_{\text{course_id}} (\sigma_{\text{semester = "Fall"}} \lor_{\text{year=2018 (section)}}) \cap \Pi_{\text{course_id}} (\sigma_{\text{semester = "Spring"}} \land_{\text{year=2017 (section)}})$

5