Comprehensive Examination (AY 2023-24, I Semester) IT Project Management (MPBA G523)

Total Duration: 150 Minutes Total Marks: 70

Date: 18 Dec, 2023

Instructor: Dr. RAJESH MATAI

Instructions:

1. This exam has two parts, A and B. Part A is a closed book, and Part B is an Open book.

- 2. Duration for each part is 75 Minutes.
- 3. Once you submit the part A answer sheet, a new answer sheet for part B will be given to you.

Part-A (Close book)

Duration: 75 Minutes Marks: 34

Q:1 Consider the following activities and their durations. The original project schedule, using early activity starts, is shown in Figure 1. Reconfigure the network using critical chain project scheduling. (2+2+10=14 M)

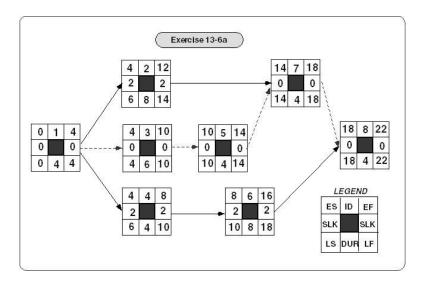



Figure 1

- a. What is the critical path?
- b. How much slack is currently available in the non-critical path?
- c. Reconfigure the network in Figure 1 as a critical chain network. What is the new duration of the project? How long are the project and feeder buffers?

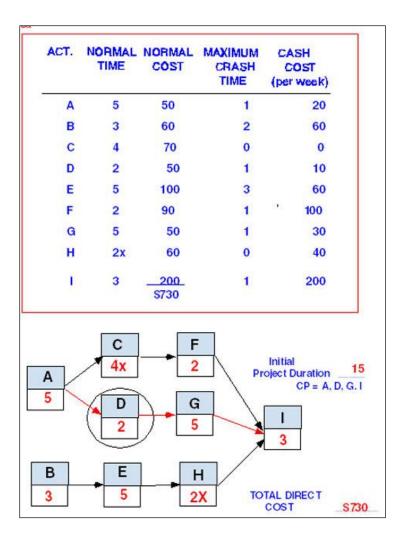
Q:2 The following data have been collected for a British health care IT project for two-week reporting periods 10 through 12. Compute the SV, CV, SPI, and CPI for each period. What is your assessment of the project at the end of period 12? (8+8+4=20 M)

Exercise 13-6b						Baseline (PV) (00\$)										
Task	Dur.	ES	LF	Slack	PV (00\$)	þ	2	4	6	8	10	12 1	4 1	6 1	8 2	0 2
1	4	0	4	0	8	4	4									
2	8	4	14	2	40			10	10	10	10					
3	6	4	10	0	30			10	15	5						
4	4	4	10	2	20			10	10							
5	4	10	14	0	40						20	20				
6	8	8	18	2	60					20	20	10	10			
7	4	14	18	0	20								10	10		
8	4	18	22	o	30										20	10
Period PV Total				4	4	30	35	35	50	30	20	10	20	10		
Cumulative PV Total				4	8	38	73	108	158	188	208	218	238	248		

STATUS REPORT: ENDING PERIOD 10

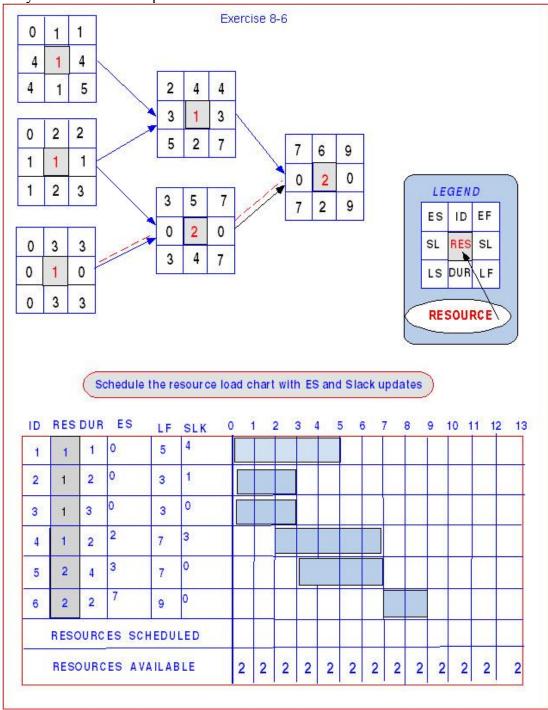
Task	%Complete	\mathbf{EV}	\mathbf{AC}	\mathbf{PV}	\mathbf{CV}	\mathbf{SV}
1	Finished		10			
2	60 %		30			
3	Finished		40			
4	50 %		20			
5	0 %		0			
6	30%		24			
Cumulat	ive Totals					

STATUS REPORT: ENDING PERIOD 12


Task	%Complete	\mathbf{EV}	\mathbf{AC}	\mathbf{PV}	CV	\mathbf{SV}			
1	Finished		10						
2	Finished		50						
3	Finished		40						
4	Finished		40						
5	50 %		30						
6	50%		40						
Cumulat	Cumulative Totals								

Comprehensive Examination (AY 2023-24, I Semester) IT Project Management (MPBA G523)

Part-B (Open Book)


Duration: 75 Minutes Marks: 36

Q:3 Given the data and information that follow, compute the total direct cost for each project duration. If the indirect costs for each project duration are \$90 (15 time units), \$70 (14), \$50 (13), \$40 (12), and \$30 (11), compute the total project cost for each duration. What duration represents the lowest total project cost? What is this cost? (10+6=16 M)

Q: 4 You have prepared the following schedule for a project in which the key resource is a backhoe. This schedule is contingent on having 3 backhoes. You receive a call from your partner, Brooker, who desperately needs 1 of your backhoes. You tell Brooker you would be willing to let him have the backhoe if you are still able to complete your project in 11 months.

Develop a resource schedule in the loading chart that follows to see if it is possible to complete the project in 11 months with only 2 backhoes. Be sure to record the order in which you schedule the activities using scheduling heuristics. Activities 5 and 6 require 2 backhoes, while activities 1, 2, 3, and 4 require 1 backhoe. No splitting of activities is possible. Can you say yes to Brooker's request? (20M)

