## Birla Institute of Technology & Science (BITS), Pilani Intro to Mol Bio and Immuno (PHA F215); Mid Sem Exam, 9th Mar 2017 Max. Marks: 30 Closed Book Duration: 90Minutes

**Q1.** In the space provided next to each definition or description, clearly write the letter of the appropriate term from the list of terms given on the last page.  $[20 \times 0.5 = 10]$ 

- i) \_\_\_\_\_A short, single-stranded DNA that serves as the necessary starting material for the synthesis of the new DNA strand in PCR
- ii) \_\_\_\_\_ The synthesis of DNA using DNA as a template
- iii) \_\_\_\_\_The building blocks of DNA and RNA
- iv) \_\_\_\_\_The synthesis of protein using information encoded in mRNA
- v) \_\_\_\_\_ The location in a eukaryotic cell where the electron transport chain occurs
- vi) \_\_\_\_\_The major component of cell membranes
- vii) \_\_\_\_\_The genetic composition of an organism
- viii) \_\_\_\_\_An organism without membrane-bound organelles
- ix) \_\_\_\_\_A cell with 1n chromosomes
- x) \_\_\_\_\_The building blocks of proteins
- xi) \_\_\_\_\_A cell with 2n chromosomes
- xii) \_\_\_\_\_A major source of energy that has the general formula (CH2O)n
- xiii) \_\_\_\_\_ An enzyme needed for completion of lagging strand synthesis, but not leading strand synthesis
- xiv) \_\_\_\_\_ The synthesis of RNA using one strand of DNA as a template
- xv) \_\_\_\_\_ A circular DNA molecule that can be used to move foreign DNA in or out of a cell
- xvi) \_\_\_\_\_ The membrane that surrounds the cell
- xvii) \_\_\_\_\_ The DNA from a eukaryote formed by the enzyme reverse transcriptase; this DNA lacks introns.
- xviii) \_\_\_\_\_ An organism with 2 identical alleles for the same gene
- xix) \_\_\_\_\_ An organism with genetic material inside a nucleus
- xx) \_\_\_\_\_ A technique for the rapid production of millions of copies of a particular region of DNA

**Q2.** You have discovered a new enzyme, enzyme X, which breaks down proteins by cleaving peptide bonds after tyrosine or phenylalanine. Enzyme X is the product of gene X that encodes a protein with the molecular weight of 50 kilodaltons (50 kD). You purify active enzyme X and find it has a molecular weight of 250 kilodaltons (250 kD). Why is active enzyme X larger than the product encoded by gene X? What you can interpret about its structure? **[2]** 

**Q3.** The following double-stranded DNA contains sequence of an eukaryotic gene:

а

5'-ATGGCCTTCACACAGG A AACA G CTATGGCCATGAGCACGCCAGTCTCGGCATTATCCTATTAAAGGGAACTGAGGTGA-3'

 $\texttt{3'-TACCGGAAGTGTGTCC} \mathbf{T} \texttt{TTGT} \mathbf{C} \texttt{GATACCGGTACTCGTGCGGTCAGAGCCGTAATAGGATAATTTCCCTTGACTCCACT-5'}$ 

a) Transcription begins at the underlined A/T at base pair 17 (a) and proceeds to the right. What are the first 12 nucleotides of the resulting mRNA? Indicate the 5' and 3' ends of the mRNA. [2]

**b**) The first 7 amino acids of the protein encoded by this gene are:

h

NH3+ -met-ala-met-ser-pro-his-tyr....COO

Draw a box around the intron region in this gene.

[2]

c) What would be the preferred secondary structure of the initial amino acids in this sequence?

d) How would the resulting protein change if the underlined G/C base pair at position 22 (b) was deleted from the DNA sequence? Briefly explain.

**Q4.** Puromycin, which is structurally similar to the aminoacyl terminus of an aminoacyl-tRNA (see diagram), inhibits protein synthesis. Based on these information, can you give a hypothesis how puromycin can affect protein synthesis?

[1]



**Q5.** The following is the sequence of two DNA helices. Which DNA helix (*helix 1 or helix 2*) needs a higher temperature to denature (uncoiling)? **Explain** why you selected this option. [1]

| Helix 1: | 5 ' ATGCGGGAGA3 ' | Helix 2: | 5 ' ATGTTTTAGA3 ' |
|----------|-------------------|----------|-------------------|
|          | 3 ' TACGCCCTCT5 ' |          | 3 ' TACAAAATCT5 ' |

Q6. You have identified a mutant cell line that shows a **single mutation** in the X gene. You find that although the X gene has the same protein coding sequence in the wild-type and mutant cells, it is **NOT transcribed in mutant cells**. Based on this information, select the sequence from the choices below that might have a mutation and explain why you selected this sequence. [2]

i) Promoter ii) Introns iii) Exons iv) 3' Untranslated region v) 5'Cap vi) Ribosome binding site

**Q7.** The **X** cDNA has the recognition site for restriction enzymes **R** and **A**. You want to clone **X** cDNA into the following plasmid that has recognition sites for restriction enzyme **Z**, **Y** and **A** as shown. *Please note: A slash* (/)represents the cutting site for each restriction enzyme.

| Ζ              | Y              | R              | Α              |
|----------------|----------------|----------------|----------------|
| 5'GT/TATT AC3' | 5'AG AATT/CT3' | 5'AT AATT/GC3' | 5'TG CCTT/CC3' |
| 3'CA ATAA/TG5' | 3'TC/TTAA GA5' | 3'TA/TTAA CG5' | 3'AC/GGAA GG5' |

Which enzyme (R/A) would you use to cut the cDNA to insert into the plasmid? Which enzyme will you use to cut the plasmid for a successful and detectable transfection? Explain. [2.5+2.5]



## You may detach this page during the exam.

## List of terms for Question 1.

- a) allele
- b) amino acids
- c) autosomal gene
- d) carbohydrate
- e) cDNA
- f) competitive inhibitor
- g) diploid
- h) endoplasmic reticulum
- i) eukaryote
- j) G protein
- k) genotype
- 1) haploid
- m) heterozygote
- n) homozygote
- o) mitochondria
- p) non-competitive inhibitor
- q) nucleotides
- r) DNA ligase
- s) phenotype
- t) phospholipids
- u) plasma membrane
- v) plasmid
- w) polymerase chain reaction
- x) primer
- y) prokaryote
- z) DNA polymerase
- aa) replication
- bb) repressor protein
- cc) sex-linked gene
- dd) transcription
- ee) translation

|                         |   | U                             | С                            | А                                   | G                                  |         | 2             |  |
|-------------------------|---|-------------------------------|------------------------------|-------------------------------------|------------------------------------|---------|---------------|--|
| 1st<br>letter           | U | UUU Phe<br>UUC UUA<br>UUA Leu | UCU<br>UCC Ser<br>UCA<br>UCG | UAU Tyr<br>UAC UAA Stop<br>UAG Stop | UGU Cys<br>UGC UGA Stop<br>UGG Trp | UCAG    | 3rd<br>letter |  |
|                         | с | CUU<br>CUC<br>CUA<br>CUG      | CCU<br>CCC Pro<br>CCA<br>CCG | CAU His<br>CAC CAA GIN<br>CAG GIN   | CGU<br>CGC Arg<br>CGA<br>CGG       | U C A G |               |  |
|                         | A | AUU AUC IIe<br>AUA AUG Met    | ACU<br>ACC<br>ACA<br>ACG     | AAU Asn<br>AAC AAA<br>AAA Lys       | AGU Ser<br>AGC<br>AGA Arg<br>AGG   | UCAG    |               |  |
|                         | G | GUU<br>GUC<br>GUA<br>GUG      | GCU<br>GCC Ala<br>GCA<br>GCG | GAU Asp<br>GAC GAA Glu<br>GAG Glu   | GGU<br>GGC Gly<br>GGA<br>GGG       | UCAG    |               |  |
| Biochemistry For Medics |   |                               |                              |                                     |                                    |         |               |  |

## **Genetic Code - Table**