Q1. A scientist isolates a new species of prokaryote. They note that the specimen is a bacillus with an outer lipid bilayer and cell wall that stains positive for peptidoglycan. Its circular chromosome replicates from a single origin of replication. Is the specimen most likely an Archaea, a Gram-positive bacterium, or a Gram-negative bacterium? How do you know?

Q2. What issues do dsRNA viruses face? How do they overcome these issues?
Q3. What strategies are used by -ve RNA, +ve RNA, and double-stranded RNA viruses to replicate?
Q4. The vaccine Gardasil which targets human papillomavirus (HPV), the etiological agent of genital warts, was developed after the anti-HPV medication podofilox. Why would doctors still want a vaccine created after antiviral medications were available?

Q5. How does the mechanism of the Gram stain relate to specific components of the bacterial cell wall?
Q6. What are the various stages of bacterial growth, and what is occurring at each stage physiologically? What can influence the lag phase?

Q7. As part of a LOP project, you get a chance to quantify bacterial numbers in environmental samples. The PhD student you are working with has used centrifugation to concentrate 101 -liter samples of lake water 1000-fold (i.e. in a final volume of 1 ml). She asks you to determine the number of viable bacteria in the samples. By plating 10 -fold serial dilutions on minimal media and incubating in ambient O_{2} at $37^{\circ} \mathrm{C}$, you get small, slow-growing colonies:

Starting dilution (1 ml)	Amount spread on plate	Number of colonies
Concentrated sample	$100 \mu 1$	Too numerous to count
10^{-1}	$100 \mu \mathrm{l}$	50
10^{-2}	$100 \mu \mathrm{l}$	5
10^{-3}	$100 \mu \mathrm{l}$	None
10^{-4}	$100 \mu \mathrm{l}$	None
10^{-5}	$100 \mu \mathrm{l}$	None

The graduate student asks if you made a mistake with your dilutions because she counted an average of 10^{5} bacteria in the samples under the microscope. What might account for the discrepancy between your CFU counts and her direct total counts?
Q8. A microbiology instructor prepares cultures for a gram-staining practical laboratory by inoculating a growth medium with a gram-positive coccus (nonmotile) and a gram-negative rod (motile). The goal is to demonstrate the staining of a mixed culture. The flask is incubated at $35^{\circ} \mathrm{C}$ for 24 hours without aeration. A sample is stained and reveals only gram-negative rods. Both cultures are known as facultative anaerobes. Give a likely reason for the success of the gram-negative rod. Assume that the cultures have comparable intrinsic growth rates.

Q9. In which settings would it be appropriate to achieve sterilization by (i) autoclaving, (ii) γ irradiation, (iii) chemical sterilants, (iv) dry heat sterilization, and (v) filtration? Give an example of each.

Q10. Many people use antimicrobial soap to kill bacteria on their hands. However, overuse may actually increase the risk of infection. How could this occur?

Q11. Briefly discuss the most interesting or surprising thing you learned about viruses.
Q12. A microbiologist has identified a new gram-negative pathogen that causes liver disease in rats. She suspects that the bacterium's fimbriae are a virulence factor. Describe how molecular Koch's postulates could be used to test this hypothesis.

