BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER 2022-2023 PHA G612: Pharmacokinetics and Clinical Pharmacy **Comprehensive Examination**

Maximum marks: 70 Date: 28/12/2022

Weightage: 35% Duration: 180 min

Note:

	Please follow all the <i>Instructions to Candidates</i> given on the cover page of the answer book.	
\triangleright	All parts of a question should be answered consecutively.	No. of Pages = 2
\triangleright	Each answer should start from a fresh page.	No. of Questions $= 9$
\triangleright	Assumptions made if any, should be stated clearly at the beginning of your answer.	

CLOSED BOOK

Q1. What is Mean Residence Time. Explain.	[6]	M]	
Q2. Explain, using appropriate diagram/s, the pharmacokinetic-pharmacodynamic mo	deling	in a	
non-steady state condition.	[6]	M]	
Q3. What are Lineweaver-Burke and Wolf's Plots.	[4]	M]	
Q4. What is bioequivalence and therapeutic equivalence. Is it right to say	that	two	
formulations with the same average AUC are bioequivalent? Explain.			

OPEN BOOK

Q5. A drug was given at a dose of 650 mg and following data was obtained.

Time (b)	Concentration
Time (II)	(µg/ml)
1	10
2	18
4	25
6	27
12	24
16	20
24	14
48	5
96	0.5

What would be the plasma concentration at 4 h after 2nd and 3rd dose, given regularly at an interval of 12 h. (Given: F=0.8). [15 M]

Q6. Justify/Comment on the following

- a. Sometimes a constant is not a constant and a variable is not a variable
- b. If the dose is doubled, the AUC becomes four times.
- c. More frequent and smaller doses are preferred over larger and less frequent doses.

Q7. A steady state was achieved after 8 h of continuous IV infusion at a rate of 6.5 mg/min. Considering the volume of distribution to be 12.8 L, determine the steady state concentration (in μ g/ml). What should be the initial faster infusion rate (in mg/min) to achieve the similar steady state within 3 h. [10 M]

Q8. Derive the formula to calculate the accumulation factor after multiple oral administration for a drug with a slower oral absorption. [8 M]

Q9. A drug was given at a dose of 250 mg IV bolus. If K12, K21, alpha and beta for the drug are 1.32, 0.8, 2.5 and 0.18 h⁻¹, respectively, calculate the concentration (in μ g/ml) of the drug after 2 h and 8 h post administration. (Given: Volume of distribution is 8 L) [8 M]

##