BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN)
 2022-2023 (SEMESTER I)
 Classical Mechanics (PHY F211)
 Mid-Semester Examination (Closed Book)
 1st November 2022
 Max. Marks : 90
 Duration : 1 hr 30 mins

1. Consider a generalized version of classical mechanics where the Lagrangian of a single particle system is of the form $L=L(q, \dot{q}, \ddot{q}, t)$. Assume Hamilton's least action principle holds for this generalized classical mechanics with the zero variation of both q and \dot{q} at the end points.
(a) Applying the methods of the calculus of variations, show that the corresponding Euler-Lagrange equation is of the form

$$
\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}}\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial q}=0 .
$$

(b) Apply the above equation to a particle of mass m whose Lagrangian is given as

$$
L=-\frac{1}{2} q\left(m \ddot{q}+\frac{1}{2} k q\right)
$$

and derive the equation of motion.
(c) The derived equation of motion is a very familiar one. Explain your result.
$[15+10+10=35]$
2. A pendulum hung from the ceiling of a moving lift and its instantaneous position of the fulcrum being denoted by $z(t)$, then the Lagrangian of this system will be

$$
\begin{equation*}
L(\theta, z, \dot{\theta}, \dot{z})=\frac{1}{2} m\left(l^{2} \dot{\theta}^{2}-2 l \dot{\theta} \dot{z} \sin \theta\right)+\frac{1}{2} m \dot{z}^{2}+m g l \cos \theta+m g z . \tag{15}
\end{equation*}
$$

Construct the Hamiltonian of this system.
3. Using Hamilton's principle, show that the shortest distance between two points on a plane is a straight line.
4. A particle is subjected to the potential $V(x)=-F x$, where F is a constant. The particle travels from $x=0$ at $t=t_{i}$ to $x=a$ at $t=t_{f}$. Assume the motion of the particle can be expressed in the form $x(t)=A+B t+C t^{2}$. Find the values of the constants A, B, and C.
5. A block of mass M is rigidly connected to a massless circular track of radius a on a frictionless horizontal table as shown in the figure. A particle of mass m is confined to move without friction on the circular track which is vertical.
(a) Construct the Lagrangian, using θ as one coordinate.
(b) Determine the equation of motion from the Euler-Lagrange equations.
(c) In the limit of small angles $(\sin \theta \simeq \theta, \cos \theta \simeq 1)$, solve the equation of motion for θ as a function of time.

