# BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN) <br> 2017-2018 (SEMESTER I) <br> Electromagnetic Theory I (PHY F212) <br> (Comprehensive Examination: Closed Book) 

Date : $\mathbf{8}^{\text {th }}$ December 2017

## Part I (Use only the last pages of the main answer copy for the rough work)

1a. Find the electric potential $V(r, \theta, \phi)$ outside an uniformly polarized solid sphere of radius $R$ centered at the origin and having polarization $\vec{P}$ along the $z$-axis.
1b. The volume current density varies inside a wire (along $z$-axis) of radius $a$ is given by $\vec{J}=J_{0}\left(1-\mathrm{e}^{-\gamma s}\right) \widehat{z}$, where $J_{0}$ and $\gamma$ are constants and $s$ is the radial distance from the axis of the wire. Calculate the total current passing through the wire.

1c. If a conducting metal sheet of surface charge density $\sigma$ shows an electric field $\vec{E}=\left(3 \sigma / \varepsilon_{0}\right) \widehat{n}$ in one side of the metal surface what will be the electric field on the other side of the metal surface?

1d. Consider a long hollow solenoid of radius $R=2 \mathrm{~mm}$ and the number of turns per unit length $n=5 \mathrm{~cm}^{-1}$. If an alternating current of amplitude 5 A and frequency $v=10^{4} \mathrm{~Hz}$ is passed through the coils, calculate the induced electric field inside $(s<R)$ the solenoid.

1e. If a line element of linear charge density $\lambda$ is forming the two sides of an equilateral triangle (side $=a$ ) in the $x-y$ plane (see figure) what will be the electric field at the centroid $P$ of the triangle?


1f. If the electric field in a region is represented as $\vec{E}=K r^{3} \widehat{r}$, where $\vec{r}$ is the distance from the origin, find the charge density $\rho$.

1 g . In the vicinity of a $p-n$ junction, the charge distribution is approximately given as $\rho(x)=\rho_{0} \cosh (x / b)$, where $b$ is a constant system parameter. Solve the Poisson's equation to calculate the electric field for the boundary condition that the electric field vanishes as $x \rightarrow \pm \infty$.

1h. A circular ring of radius 10 cm is carrying a current $5 A$, and small ring of radius 1 mm is placed coaxially at a distance 20 cm . Calculate the approximate mutual inductance if two loops are in parallel.

1i. Find the value of the following integral along a parabolic path $x=y ; x=z^{2}$ :

$$
\int_{(0,0,0)}^{(3,3,3)} \vec{\nabla}\left(x^{2}+\frac{1}{9} x y+\frac{1}{81} x y z^{3}\right) \cdot \overrightarrow{d l} .
$$

1 j . The magnetic vector potential in a region is given by $\vec{A}=a y^{2} \widehat{x}$. Find the volume current density in that region.

$$
[3 \times 10=30]
$$

## Answer sheet of Closed Book part

## (Reminder: Use only the last pages of the main answer sheet for the rough work)

Name: $\square$ ID: $\square$

1a. $\square$
$\square$
$\square$
$\square$
$\square$
$\square$
$\square$
1h. $\square$
1 i. $\square$
1 j.

# BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN) <br> 2017-2018 (SEMESTER I) <br> Electromagnetic Theory I (PHY F212) <br> (Comprehensive Examination: Open Book) 

Date : 8 ${ }^{\text {th }}$ December 2017
Max. Marks : 80 (Open book 50)

Duration : Time left after Closed Book part
2. A uniformly charged solid sphere of radius $R$ carries a total charge $Q$, and is set spinning with angular velocity $\omega$ about the $z$-axis.
(a) Calculate the magnetic dipole moment of the sphere?
(b) Using the dipole approximation, calculate the vector potential $\vec{A}_{\text {dip }}(\vec{r})$ at large distances?
(c) Calculate the vector potential inside the sphere. [Hint: You may directly use the results of Example 5.11 of your textbook (Griffiths' 4th Edition and 3rd Edition)]
$[6+2+7=15]$
3. (a) A spiral coil (lying on $x-y$ plane) of outer radius $R$ and having total $N(\gg 1)$ number of homogeneously packed loops, is placed in a magnetic field $\vec{B}=0.5 \cos (100 \pi t) \widehat{z}$. Calculate the emf generated in the coil.

(b) Two long cylindrical shells of radii 5 mm and 10 mm placed coaxially. If 5 A current flows in both the shells along their length but in opposite directions, calculate the self-inductance of the system.
4. A point charge $q$ is embedded within a semi-infinite linear dielectric ( $\varepsilon_{1}$ for $z>0$ ), a distance $d$ away from a planer interface (at $x-y$ plane, $z=0$ ) that separates the first dielectric medium from another semi-infinite linear dielectric ( $\varepsilon_{2}$ for $z<0$ ). Find the followings:
(a) Surface charge density $\sigma(x, y)$ at the interface $(z=0)$ due to the polarization.
(b) Potential $V(x, y, z)$ for both dielectric regions, as $V(z<0)$ and $V(z>0)$.

5. (a) A uniformly charged infinite plane slab of thickness $2 d$ and volume charge density $\rho$ is placed in $x-y$ plane such a way that $z=0$ represents the center of the slab. Find the electric field $\vec{E}$ at a point $P(z=a)$, for (i) $a<d$ and (ii) $a>d$.
(b) For $a>d$, another uniformly charged plane sheet is introduced parallelly at a distance $b(d<b<a)$ between the slab and point $P$ such that the electric field $\vec{E}$ vanishes everywhere between the slab and sheet. Find the relation between the surface charge density $\sigma$ of the sheet and $\rho$.

For your convenience:

Gradient: $\quad \nabla t=\frac{\partial t}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\phi}$
Divergence: $\boldsymbol{\nabla} \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
Curl: $\quad \nabla \times \mathbf{v}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta v_{\phi}\right)-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{\mathbf{r}}$

$$
+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r v_{\phi}\right)\right] \hat{\boldsymbol{\theta}}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r v_{\theta}\right)-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\boldsymbol{\phi}}
$$

Laplacian: $\quad \nabla^{2} t=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} t}{\partial \phi^{2}}$

