BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN)

2017-2018 (SEMESTER I)

Electromagnetic Theory I (PHY F212)

Mid-Semester Examination (Closed Book)
12th October 2017

1. Evaluate the integral:

$$
A=\int_{V}\left(\frac{1}{r-2}\right) \nabla^{2}\left(\frac{1}{r^{2}}\right),
$$

where V is the sphere of radius 2 centred at point $P(1,1,1)$.
2. (i) (a) Find the repulsive force between the 'northern' and the 'southern' hemispheres of a uniformly charged insulating solid sphere of radius R and total charge Q.
(b) If the insulating sphere is replaced by a conducting one, what will be the repulsive force between the 'northern' and the 'southern' hemispheres?
(ii) Find the capacitance of two concentric spherical shells of radii a and b ?
3. Four point charges are placed at the corners of a square of side a as shown in the figure.

(i) Explicitly derive the first three terms ($n=0,1,2$) in the multipole expansion for the potential.

Given: $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{1}{r} \int \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{r^{2}} \int r^{\prime} \cos \alpha \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{r^{3}} \int\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right) \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}+\ldots\right]$
(ii) Two point charges q_{1} and q_{2} are placed at distances a and b, respectively, from the origin. Calculate the average potential over a spherical surface of radius R, centered at the origin (where $a<R<b$).
4. A point charge q is situated at a large distance r from a neutral atom of polarizability α. Find the force on the point charge due to the neutral atom.

