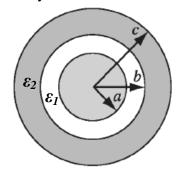
BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI First Semester 2022-2023

MID-SEMESTER EXAMINATION Electromagnetic Theory I (PHY F212)

Max. Time: 90 min. Total Marks: 90M Date: 02.11.2022. Closed book

Instructions:

- ✓ The question paper consists of two types: objective type (no partial marking) & subjective type.
- ✓ Answer all questions to the point and write all parts of a single question together.
- ✓ Always box the final answer.


Q1 Objective type questions

 $[15 \times 2 = 30M]$

- (a) What is the line integral of the gradient of $T = x^2 + 4xy + 2yz^3$, along the parabolic path $z = x^2$, y = x, from the origin O(0,0,0) to the point P(1,1,1)?
- (b) Find the value of $\int_0^5 (x^2+3x+2)\delta(x+3)dx$
- (c) Two conducting spheres of initial charges 4q and -q are brought in contact and separated back again. If the radii of the spheres are 2r and r, what would the final charges on each spheres?
- (d) The electric field inside a charge neutral sphere of radius R is $E = kr^2 r$. What is the surface charge density if it is assumed to be uniform?
- (e) Two infinite parallel planes carry equal surface charge densities of σ , separated by a distance d. Find the field between two planes and at a distance 2d left from the right plane.
- (f) Write down the relation between bound (ρ_b) and free (ρ_f) volume charge densities for a homogeneous isotropic linear dielectric having electrical susceptibility γ_e ?
- (g) What are the bound charge densities for surface σ_b and volume ρ_b of a sphere of radius R carrying a polarization of $P(r) = r/r^3$?
- (h) In case of a charge distribution Q_i (r_i), the total charge $\sum Q_i = 0$. If the dipole moment of this charge distribution with respect to a point A is p_a , what will the dipole moment p_b with respect to another point B, which is separated by a distance r from point A?
- (i) Two large metal plates each of area A are held at a small distance d apart. If each plate carries a charge Q, what is the electrostatic pressure on the plates?
- (j) Two identical point charges +q are located at (0,0,d) and (d,0,d), respectively. If an infinite grounded conducting plane is placed in the XY plane now, what is the force experienced by the charge q (0,0,d)?
- **Q2.** (a) Find the repulsive force F_i between the 'northern' and the 'southern' hemispheres of a uniformly charged (insulating) solid sphere of radius R carrying total charge Q.
- (b) If the sphere is replaced by a conductor, what will be the new force F_c in terms of F_i ? [12+8=20M]
- **Q3.** (a) A point charge q is situated at a large distance \mathbf{r} from a neutral atom of electrical polarizability α . Find the force on the point charge q due to the neutral atom.
- (b) Two infinitely grounded metal plates make an angle 60° with each other, meet along the X-axis. One of the plate is in the XY plane and a point charge +q is placed on the YZ plane at equidistant d from both plates. Schematically represent the image charges (position, magnitude and polarity) which can eventually replace the effect of surface charge distribution on the grounded plates for the field space.
- (c) Now, find the potential V(x = 0) on the YZ plane at distances 2d from both the plates. [6+8+6=20M]

- **Q4.** A spherical conductor of radius a and uniform surface charge density σ is surrounded by two concentric thick spherical shells of liner dielectric materials of permittivity ε_I and ε_2 , respectively.
- (a) Find the potential at the center with respect to the infinity.
- (b) Find the surface charge densities σ at the interface (r = b) of two dielectrics.
- (c) What is the total energy of this configuration?

[7+6+7=20M]

In case you may need

$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$$

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$