BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJ)

SEMESTER I 2023 - 2024

Electromagnetic Theory I (PHY F212): Midsem - PART B

Date : 9 Oct 2023Closed BookMarks: 60Duration max: 90 min

All the parts should be answered together. All bold face characters represents vectors.

- 1. (a) Define the Strokes theorem for a vector field \mathbf{v} .
 - (b) Test the Strokes' theorem for the vector field $\mathbf{v} = (xy)\hat{\mathbf{x}} + (2yz)\hat{\mathbf{y}} + (3zx)\hat{\mathbf{z}}$ using the a trianglular shaded area shown in the Figure 1. [2+11 = 13]

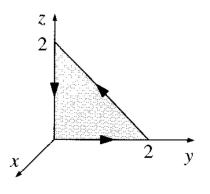


Figure 1:

- 2. A uniformly charged solid sphere of radius R and having a volume charge density ρ is surrounded by a thick concentric metal shell of inner radius a and outer radius b. The shell carries no net charge.
 - (a) Find the surface charge density σ at a and b.
 - (b) Find the electric field $\mathbf{E}(\mathbf{r})$ and potential $V(\mathbf{r})$ in the regions i) r < R, ii) R < r < a, iii) a < r < b and iv) r > b.
 - (c) Find the electrostatic pressure on all surfaces at R, a and b.
 - (d) How σ , E, V and the electrostatic pressure change if the outer surface of the shell is grounded. [2 + 14 + 6 + 2 = 24]
- 3. A point charge q is situated a distance a from the center of a grounded conducting sphere of radius R. The origin is located at the center of the sphere.
 - (a) Obtain an expression for the potential at any point $V(r, \theta)$ outside the sphere in the usual spherical polar coordinates with the z axis along the line through q.
 - (b) Find the induced surface charge density $\sigma(r, \theta)$ on the sphere, as a function of θ . Obtain the total induced charge.
 - (c) Calculate the electrostatic energy of this configuration.
 - (d) Find the monopole moment and the dipole moment of the system. [7+6+5+5=23]