Course No: PHY F212
Date: 14.03.2023.

Instructions: Answer all questions to the point and write all parts of a single question together.

Q1. Short answer type questions: No partial marking (bold faced characters represent vector) [$\mathbf{2 \times 1 0}=\mathbf{2 0 M}$]
(a) Three point charges $q(0,0, a), q(0,0,-a)$ and $-2 q(0, a, 0)$ are placed in free space $\left(\varepsilon_{0}\right)$. Find the total force $\boldsymbol{F}(-2 q)$ on the charge $-2 q$.
(b) Two conducting spheres of initial charges $8 q$ and $-3 q$ respectively, are brought in contact and separated back again. If the radii of the spheres are $3 r$ and $2 r$, what would be the final charges on each sphere?
(c) What is the total electrostatic energy of a free point charge?
(d) If a parallel plate capacitor is filled with an insulating material of dielectric constant $\varepsilon_{r}=2$, how the capacitance C and the electric filled \boldsymbol{E} between two plates will change with respect to earlier values (vacuum)?
(e) In case of a charge distribution $Q_{i}\left(\boldsymbol{r}_{\mathbf{i}}\right)$, the total charge $\sum Q_{\mathrm{i}}=0$. If the dipole moment of this charge distribution with respect to a point A is $\boldsymbol{p}_{\mathrm{a}}$, what will the dipole moment $\boldsymbol{p}_{\mathrm{b}}$ with respect to the point B, which is separated by a distance r from A ?
(f) Find the value of $\int_{0}^{2}\left(\mathrm{x}^{2}+3 \mathrm{x}+2\right) \delta(\mathrm{x}-3) \mathrm{dx}$
(g) For a homogeneous linear dielectric of polarization \boldsymbol{P} find the value of $\oint \boldsymbol{D} . \boldsymbol{d} \boldsymbol{l}$, where \boldsymbol{D} represents the electric displacement.
(h) Write down the boundary conditions for the normal and the tangential component of \boldsymbol{E} across a surface charge distribution with charge density ' σ '?
(i) A non-zero point charge q_{1} is placed at a distance d in front of an infinite grounded conductor plate. Another point charge q_{2} is placed at the middle ($d / 2$), between the q_{1} and the conductor. If the total force on q_{1} is zero, find the relation between q_{1} and q_{2}.
(j) Find the value of ∇r, where r represents the position vector.

Q2. An inverted hemispherical bowl of radius R carries a uniform surface charge density σ, resting on XY plane and centred at the origin (Figure 1).
(a) Find the potential difference between the 'north pole' P and the center C .
(b) What will be the electric field $\boldsymbol{E}_{\boldsymbol{p}}$ at the 'north pole' P?
[9+8=17M]

Figure 1

Q3. The Coulomb force \boldsymbol{F} on a charge particle under an electric field \boldsymbol{E} is represented in spherical polar coordinates as:

$$
\mathbf{F}=k(r \cos \theta) \hat{\mathbf{r}}+(r \sin \theta) \hat{\boldsymbol{\theta}}+(r \sin \theta \cos \phi) \hat{\boldsymbol{\phi}} \quad \quad(k \text { is a constant })
$$

State the divergence theorem for the force field \boldsymbol{F} and validate it within the volume of the abovementioned inverted hemispherical shell of radius R, centred at the origin (Figure 1).
[15M]

Q4. Four point charges $3 q(0,0, a), q(0,0,-a),-2 q(0, a, o)$, and $-2 q(0,-a, 0)$, are placed at distance ' a ' each from the origin, within a free space (ε_{0}) (Figure 2). Find the approximate potential $V(r, \theta, \varphi)$ at any point far from the origin, due to this charge distribution.
[12M]

ε_{1}

Figure 2
Q5. If a point charge q is held at a point $\mathrm{P}(0,0, \mathrm{~d})$ above an infinite grounded conducting plate placed in (X-Y) plane.
a) Define the image problem with proper boundary conditions and find the potential $V(x, y, z)$, where z is any positive number.
b) Find the induced surface charge density $\sigma(x, y)$ and total induced charge Q of the grounded plate.
c) Find the force \boldsymbol{F} on the point charge q exerted by the grounded plate.
d) Calculate the energy W of this configuration.
$[4+6+3+5=16 \mathrm{M}]$
Q6. 2. If a sphere of radius R carries a polarization $\boldsymbol{P}(\mathbf{r})=k \mathbf{r}$
a) Calculate the bound charge densities σ and ρ.
b) Find the electric field $\boldsymbol{E}(\mathbf{r})$ inside and outside of the sphere.

In case you may need

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \mathbf{v}=\frac{1}{s} \frac{\partial}{\partial s}\left(s v_{s}\right)+\frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z} \\
\boldsymbol{\nabla} \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}
\end{gathered}
$$

