Birla Institute of Technology and Science, Pilani

Second Semester 2022-23 Mid-Semester Examination (Open Book)

Course Title: Electromagnetic Theory II

Maximum Marks: 90 Maximum Time: 90 mins

The angular velocity $\omega(t)\hat{z}$ of the cylindrical shell shown below increases from zero and smoothly approaches the steady value ω_0 . The shell has infinitesimal thickness and carries a uniform charge per unit length $\lambda=2\pi R\sigma$, where σ is a uniform charge per unit area. Assume that the shell radius $R \ll L$ and that the spin-up is very slow so the displacement current may be neglected.

(a) Find the static electric field and steady magnetic field when $\omega = \omega_0$.

Find $B(\vec{r},t)$ everywhere during the spin-up and use it to find the time-dependent part of the electric field.

The spin-up is performed by an external agent, who supplies power at a rate $-\vec{J} \cdot \vec{E}$ per unit volume to create the magnetic field. Confirm this by evaluating Poynting's theorem over all of space

Evaluate Poynting's theorem using a cylindrical volume with a radius slightly smaller than the shell to study the flow of energy into the interior from the surface of the shell.

[5+5+5+5]

Date: 18/03/2023

2. Let $E(z,t) = E_0 \cos(kz - \omega t)\hat{x} + E_0 \cos(kz + \omega t)\hat{x}$ represent two counter-propagating plane waves.

- (a) Write E(z,t) in a simpler and compact form and find the associated magnetic field B(z,t).
- (b)For the fields in part (a), find the instantaneous and time-averaged electric and magnetic field energy densities. [5+5]
- 3. For the rectangular wave-guide (a = 3.0 cm and b = 1.5 cm) discussed in class,
- (a) Calculate the cut-off frequency for TE₂₁ mode?
- (b) Write the expression for $B_x(x, y)$, $B_y(x, y)$, and $B_z(x, y)$ for TE₃₂ mode.
- (c) Write the expression for $E_v(x, y)$, $E_v(x, y)$ and for TE₄₂ mode.
- (d) Write the generic expression for the total electric field $(\tilde{E}(x, y, z, t))$ and the total magnetic field $(\tilde{B}(x, y, z, t))$ for TE₅₆ mode. [6+6+4+4]

4. A bead of mass m and charge q moves along the spoke (non-conducting) of a wheel with a constant speed u meters per sec. The wheel rotates with uniform angular velocity $\dot{\theta} = \omega$ radians per sec about an axis fixed in space. At t=0, the spoke is along the x-axis, and the bead is at the origin. Find the Lienard-Wichert potentials, V(r,t) and A(r,t) for the points on the z-axis.

[10+10]

8. A bead of mass m and charge q moves freely with a constant speed u on a non-conducting circular wire of radius R which is kept on the x-y plane in free space (Neglect gravity). At t=0, the bead's position is (R,0). Calculate the expression for the $\bar{E}(r,t)$ and $\bar{B}(r,t)$ at the origin of the circular wire.

