Mid Semester Examination (CB)

QUANTUM MECHANICS I (PHY F242)

Date : 8th March 2017 Max. Time : 1.5 hrs Max. Marks : 60
Q1.(No quantum effects in macroscopic world !) Consider a (genuine) fast bowler bowls with average speed $150 \mathrm{~km} / \mathrm{hr}$ (take the mass of the cricket ball as 150 gm). Calculate the associated de Broglie wave length λ_{B} and the Compton wave length λ_{c} of the ball. How large/small are these values in compared to the size of a proton $(\sim 1 \mathrm{fm})$. Do the order of magnitude estimate only. [4]

Q2. (classical variables \Rightarrow quantum operators) For the wave function $\psi(x)=3 x^{2} \exp \left(-\frac{i E t}{\hbar}\right)$, calculate the commutator $\left[\hat{x}, \hat{p}^{2}\right] \psi(x) . \quad[4]$

Q3. (special op. \Rightarrow physical observables) For any arbitrary operator \hat{A} and its adjoint \hat{A}^{\dagger} (not necessarily selfadjoint), which among the following combinations will give purely real/imaginary eigen values. Justify your answer (in one/two sentences). (a) $\hat{A}+\hat{A}^{\dagger} \quad$ (b) $\hat{A}-\hat{A}^{\dagger} \quad$ (c) $i\left(\hat{A}+\hat{A}^{\dagger}\right) \quad$ (d) $i\left(\hat{A}-\hat{A}^{\dagger}\right)$. [4]

Q4. (uncertainty) Consider the following set of wave functions $\psi(x)$ in coordinate (1-d) representation, determine the corresponding wave function $\phi(p)$ in momentum representation. Plot (the real part of) $\psi(x)$ and corresponding $\phi(p)$. Comment on uncertainty principle based on your results. The systems are considered to be extended over all space. (a) $\psi(x)=|A| \exp \left(\frac{i p_{0} x}{\hbar}\right)$ (b) $\psi(x)=|A| \delta(x) . \quad[\mathbf{7}+\mathbf{7}]$

Q5.(measurement) Here is a simple eigenvalue problem, $i \frac{d f(\phi)}{d \phi}=\lambda f(\phi)$, where ϕ is the standard azimuthal angle and $f(\phi)=f(\phi+2 \pi)$. (a) Determine the set $\left\{\lambda_{n}\right\}$ and the corresponding normalized set of eigenfunctions $\left\{f_{n}(\phi)\right\}$. (b) Show that $\left\{f_{n}(\phi)\right\}$ form an orthonormal basis. (c) If the state of the system is described by $F(\phi)=\sqrt{\frac{4}{3 \pi}} \cos ^{2} \phi$ (the prefactor ensures normalized $F(\phi)$), determine the probable outcomes (i.e., various eigenvalues λ_{n}) of measurement and the probability P_{n} of each outcome (include non-zero probability only). $[\mathbf{6}+\mathbf{4}+\mathbf{7}]$

Q6. (Eigen function, uncertainty and evolution of w.f.) You have solved the "free particle in a 1-d box" problem when the walls of the box are at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$. The resulting energy eigenfunctions are given as, $\phi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}$ with corresponding eigenvalues E_{n}, where $\mathrm{n}=1,2,3, \ldots$ Now, if the walls are at $x= \pm L / 2$, (a) obtain the energy eigen function (by inspection/symmetry argument from above result), (b) for the lowest state, determine the standard deviations $\Delta x \& \Delta p$ and hence the product $\Delta x \Delta p$. (c) Suppose that at $\mathrm{t}=0$, the state of the particle is described by $\psi(x, 0)=\frac{3 \phi_{1}+4 \phi_{5}}{5}$, write down the state $\psi(x, t)$ at later time t. $\quad[\mathbf{5}+\mathbf{1 0}+\mathbf{2}]$

```
\(\overline{\text { Useful constants and formulae : } c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, h=6.63 \times 10^{-34} \mathrm{j} \text {-s }}\)
Fourier transform : \(\psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \phi(p) e^{\frac{i p x}{\hbar}} d p \quad ; \phi(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \psi(x) e^{\frac{-i p x}{\hbar}} d x \quad ; \delta(p)=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{\frac{-i p x}{\hbar}} d x\)
```

