Second Semester, 2022-2023
Mid-Semester Examination (Closed Book)
Quantum Mechanics-1 (PHY F242)
Date: 16.03.2023
Some constants you may need:
$h=6.626 \times 10^{-34} J s ; c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

1. Obtain the expression for average energy per oscillatory degree of freedom due to Planck by considering discrete quantum for energy. [20]
2. (a) Light from a sodium vapour lamp has a wavelength of 589 nm . What is the energy of the photon (in ev) corresponding to this wavelength?
(b) Electric field of radiation is given as $\vec{E}=E_{0} \hat{i} \cos \left[k_{0}(y+z)-\omega t\right]$. What is the magnitude and direction of the photon momentum?
(c) The work function of a metal is $2.0 \times 10^{-19} \mathrm{~J}$. (i) What is the threshold frequency for photoelectric emission? (ii) If the metal is exposed to a light beam of frequency $6.0 \times 10^{14} \mathrm{~Hz}$, what will be the stopping potential in volts (potential required to stop the emission of electron)? [10]
3. (a) Whenever $\int_{V}|\psi|^{2} d \tau \neq 1$ you need to normalise the wavefunction. Normalise the wavefunction $\psi(x)=e^{-|x|} \sin \alpha x$. [10]
(c) If a particle is described by the above normalized wavefunction, what is the probability that its position is to the right of the point $x=1$? [10]
4. Consider a wave-packet $\Psi(x, t)$ formed by super-posing plane-waves of amplitude $\phi\left(p_{x}\right)$ in momentum space.Assume that $\phi\left(p_{x}\right)$, is sharply peaked at $p_{x}=p_{0}$ and falls rapidly to zero outside the interval $\left(p_{0}-\Delta p_{x}, p_{0}+\Delta p_{x}\right)$. Show that such a wave-packet is the product of a plane wave of wavelength $\lambda_{0}=h / p_{0}$ and angular frequency $\omega_{0}=E\left(p_{0}\right) / \hbar$ times a modulating envelop function $F(x, t)$, and that this envelop function propagates without change of shape with a group velocity $v_{g}=p_{0} / m$, as long as $\frac{\left(\Delta p_{x}\right)^{2} t}{2 m \hbar} \ll 1$. [20]
5. Obtain the Bohr frequency relation $\nu_{a b}$ corresponding to transition between two energy levels E_{a} and E_{b}. Show that using Bohr's correspondance principle, it reproduces the frequency expected in classical physics. [20]
