Birla Institute of Technology and Science - Pilani, Pilani Campus Semester II (Session 2022-23) Midsemester Examination (Closed Book) Mathematical Method of Physics (PHYF243)

Date : $14/03/2023$	Weightage : 30 $\%$
Time: 90 Mints.	Max. Marks: 90

Q1: (i) Write transformation rules for mixed tensor; A_{ij}^{klm} and covariant vector B_n . Determine the tensor inner product taking k = n. (ii) Assume a mixed tensor C_{lm}^{ijk} of rank 5. Do all possible contraction operation and find out the rank of the resulting tensor. [10+5]

Q2: Assume 4-D Cartesian Minkowski coordinate system (ct, x, y, z). Write down covariant basis vectors in corresponding 4-D Minkowski spherical polar coordinate (ct, r, θ, ϕ) system using Cartesian Minkowski coordinates basis functions, i.e., \hat{e}_t , \hat{e}_x , \hat{e}_y , \hat{e}_z . Using above basis vectors, write covariant metric tensor in 4-D Minkowski spherical polar coordinate system. [Use $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$.] [15]

Q3: (i) In a vector space of functions, scalar product is defined by $\langle f|g \rangle = \int f^*(x)g(x)dx$. Expand $\exp(2\pi x)$ in terms of a orthogonal, but non-normalized set of basis functions $\chi_0 = 1$, $\chi_1 = \sin x$, $\chi_2 = \sin 2x$, $\chi_3 = \sin 3x$ in the range $(0, \pi)$ and determine the coefficients required for the expansion. [You can leave your answer in terms of integral !]. (ii) The value of covariant metric tensor in 3-D circular cylindrical polar coordinate system (ρ, ϕ, z) as $g_{\rho\rho} = 1$, $g_{\phi\phi} = \rho^2$, $g_{zz} = 1$. Find the value of Christoffel's symbol Γ_{31}^3 . [10+5]

Q4: Use Gram-Schmidt orthogonalization process to find first three orthonormalized set of functions of a vector space of functions defined over a range [-1,1] and spanned by the basis functions $\phi_0(x) = 1$, $\phi_1(x) = x$, $\phi_2(x) = x^2$, $\phi_3(x) = x^3$. [Use scalar product defined in Q3]. [15]

Q5: (i) A vector \vec{V} is expressed as; $\vec{V} = V^i \vec{\epsilon_i}$ (with $\vec{\epsilon_i}$ as basis vector) in any non-orthogonal coordinate system say (q^1, q^2, q^3) . Obtain its covariant derivative in terms of Christoffel's symbol and express total derivative of \vec{V} i.e., $d\vec{V}$ in terms of it. (ii) Show that $\Gamma^i_{jk} = \Gamma^i_{kj}$. [10+5]

Q6: (i) Express $\frac{\partial \epsilon^i}{\partial q^j}$ in terms of Christoffel's Symbols (sometimes called Omega coefficients). (ii) For the transformation u(x, y, z) = x + y - z, v(x, y, z) = x/y, w(x, y, z) = x - y + z with $x \ge 0, y \ge 0, z \ge 0$, find the Jacobian $J = \frac{\partial(x, y, z)}{\partial(u, v, w)}$. [10+5]

** Best Wishes **