Birla Institute of Technology and Science - Pilani, Pilani Campus Semester II (Session 2022-23) Comprehensive Examination Mathematical Method of Physics (Closed Book)

Date : $11/05/2023$	Weightage : 20 $\%$
Time: 90 Mints.	Max. Marks: 60

Q1: (i) Assuming a 3-D spherical polar coordinate system, define three basis vectors, $\vec{\epsilon}_r$, $\vec{\epsilon}_{\theta}$ and $\vec{\epsilon}_{\phi}$. Using above basis vectors, obtain factors h_r , h_{θ} and h_{ϕ} . Also find the matrix representation of the covariant metric tensor g_{ij} in spherical polar coordinate system.

(ii) Define Christoffel's symbol Γ^i_{ik} . Express it in terms of derivatives of the metric tensors. [6+6]

Q2: (i) If $A_k = \frac{1}{2} \epsilon_{ijk} B^{ij}$, where B^{ij} is an antisymmetric tensor. Show that; $B^{mn} = \epsilon^{mnk} A_k$. (ii) A 2-D orthogonal system is described by the coordinates q_1 and q_2 . Show that the Jacobian J transforming

(x, y) to (q_1, q_2) satisfies the equation:

$$J = \frac{\partial(x,y)}{\partial(q_1,q_2)} = \frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2} - \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1} = h_1 h_2, \tag{1}$$

where $h_i^2 = g_{ii}$. [6+6]

Q3: Assuming ψ which is expressed in terms of orthonormal basis functions $|\phi_{\mu}\rangle$ by using coefficients c_{μ} as; $\psi = \sum_{\mu} c_{\mu} \phi_{\mu}$. Define an unitary matrix $u_{\nu\mu}$ that connects old basis $|\phi_{\mu}\rangle$ to the new basis $|\phi'_{\nu}\rangle$. (i) Use above two equations to write down matrix representation of unitary matrix $u_{\nu\mu}$ in terms of the basis functions. (ii) Show that new coefficient vector c' in new basis functions is related to the old coefficient vector c in old basis functions by the matrix equation: c' = Uc, where U is unitary matrix. [6+6]

Q4: Solve boundary value problem; $y'' = \sin x$, y'(0) = 0; $y(\pi) = 0$. [12]

Q5: (i) Find the residue of the function $f(z) = \frac{\sinh z}{z^2 \cosh z}$ at zero of $\cosh z$ i.e., at $z = \pi i/2$. (ii) Evaluate $\int_0^\infty \frac{\ln x \, dx}{x^2 + 4}$ using the method of Complex integration. [3+9]

** Best Wishes **

Birla Institute of Technology and Science - Pilani, Pilani Campus Semester II (Session 2022-23) **Comprehensive Examination** Mathematical Method of Physics (Open Book)

Date : 11/05/2023 Time: 90 Mints.

Weightage : 20%Max. Marks: 60

Q1: A_{ij} in 3-D coordinate system can be expressed as:

$$A_{ij} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ -d & 0 & f \end{bmatrix}$$

Calculate the components of the dual tensor defined by; $V^{ij} = \frac{1}{2} \epsilon^{ijkl} A_{kl}$. [12]

Q2: (i) Find the value of the following Christoffel symbols of the second and first kind in cylindrical coordinates: Γ_{21}^2 , [12, 1].

(ii) Find the Christoffel symbol of the second kind Γ_{21}^1 in parabolic coordinate system; $(x^1, x^2, x^3) = (\xi, \eta, \phi)$, where $x = \xi \eta \cos \phi$, $y = \xi \eta \sin \phi$, $z = \frac{1}{2}(\xi^2 - \eta^2)$. [12]

Q3: (i) Use the eigen value method to determine the normal modes of the coupled oscillator shown in Figure below (assume no friction between mass and table); Also determine the corresponding eigen vectors.

(ii) Diagonalize the following matrix by using unitary transformation, if possible:

$$B = \begin{pmatrix} 2 & 0 & 0\\ 1 & 2 & 1\\ -1 & 0 & 1 \end{pmatrix}$$

Q4: Find and use the initial value Green's function to solve the ODE; (i) $x^2y'' + 3xy' - 15y = x^4e^x$, $y(1) = x^4e^x$ 1; y'(1) = 0.[12]

Q5: Evaluate the integral using the method of Complex Integration: $\int_0^{2\pi} \frac{\cos 2\theta \, d\theta}{1 - 2a \cos \theta + a^2}$; -1 < a < 1. [12]

** Best Wishes **

