Birla Institute of Technology and Science - Pilani, Pilani Campus
 Semester II (Session 2022-23)
 Comprehensive Examination
 Mathematical Method of Physics (Closed Book)

Date: 11/05/2023
Weightage : 20 \%
Time: 90 Mints.

Q1: (i) Assuming a 3-D spherical polar coordinate system, define three basis vectors, $\vec{\epsilon}_{r}, \vec{\epsilon}_{\theta}$ and $\vec{\epsilon}_{\phi}$. Using above basis vectors, obtain factors h_{r}, h_{θ} and h_{ϕ}. Also find the matrix representation of the covariant metric tensor $g_{i j}$ in spherical polar coordinate system.
(ii) Define Christoffel's symbol $\Gamma_{j k}^{i}$. Express it in terms of derivatives of the metric tensors. [6+6]

Q2: (i) If $A_{k}=\frac{1}{2} \epsilon_{i j k} B^{i j}$, where $B^{i j}$ is an antisymmetric tensor. Show that; $B^{m n}=\epsilon^{m n k} A_{k}$.
(ii) A 2-D orthogonal system is described by the coordinates q_{1} and q_{2}. Show that the Jacobian J transforming (x, y) to $\left(q_{1}, q_{2}\right)$ satisfies the equation:

$$
\begin{equation*}
J=\frac{\partial(x, y)}{\partial\left(q_{1}, q_{2}\right)}=\frac{\partial x}{\partial q_{1}} \frac{\partial y}{\partial q_{2}}-\frac{\partial x}{\partial q_{2}} \frac{\partial y}{\partial q_{1}}=h_{1} h_{2} \tag{1}
\end{equation*}
$$

where $h_{i}^{2}=g_{i i} .[6+6]$

Q3: Assuming ψ which is expressed in terms of orthonormal basis functions $\mid \phi_{\mu}>$ by using coefficients c_{μ} as; $\psi=\Sigma_{\mu} c_{\mu} \phi_{\mu}$. Define an unitary matrix $u_{\nu \mu}$ that connects old basis $\mid \phi_{\mu}>$ to the new basis $\mid \phi_{\nu}^{\prime}>$. (i) Use above two equations to write down matrix representation of unitary matrix $u_{\nu \mu}$ in terms of the basis functions. (ii) Show that new coefficient vector c^{\prime} in new basis functions is related to the old coefficient vector c in old basis functions by the matrix equation: $c^{\prime}=U c$, where U is unitary matrix. [6+6]

Q4: Solve boundary value problem; $y^{\prime \prime}=\sin x, y^{\prime}(0)=0 ; y(\pi)=0$. [12]

Q5: (i) Find the residue of the function $f(z)=\frac{\sinh z}{z^{2} \cosh z}$ at zero of $\cosh z$ i.e., at $z=\pi i / 2$.
(ii) Evaluate $\int_{0}^{\infty} \frac{\ln x d x}{x^{2}+4}$ using the method of Complex integration. [3+9]

Birla Institute of Technology and Science - Pilani, Pilani Campus
 Semester II (Session 2022-23)
 Comprehensive Examination
 Mathematical Method of Physics (Open Book)

Date : 11/05/2023
Weightage : 20 \%
Time: 90 Mints.

Q1: $A_{i j}$ in 3-D coordinate system can be expressed as:

$$
A_{i j}=\left[\begin{array}{ccc}
a & b & c \tag{12}\\
0 & d & e \\
-d & 0 & f
\end{array}\right]
$$

Calculate the components of the dual tensor defined by; $V^{i j}=\frac{1}{2} \epsilon^{i j k l} A_{k l}$.
Q2: (i) Find the value of the following Christoffel symbols of the second and first kind in cylindrical coordinates: $\Gamma_{21}^{2},[12,1]$.
(ii) Find the Christoffel symbol of the second kind Γ_{21}^{1} in parabolic coordinate system; $\left(x^{1}, x^{2}, x^{3}\right)=(\xi, \eta, \phi)$, where $x=\xi \eta \cos \phi, y=\xi \eta \sin \phi, z=\frac{1}{2}\left(\xi^{2}-\eta^{2}\right)$.

Q3: (i) Use the eigen value method to determine the normal modes of the coupled oscillator shown in Figure below (assume no friction between mass and table); Also determine the corresponding eigen vectors.

(ii) Diagonalize the following matrix by using unitary transformation, if possible:

$$
B=\left(\begin{array}{ccc}
2 & 0 & 0 \tag{12}\\
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

Q4: Find and use the initial value Green's function to solve the ODE; (i) $x^{2} y^{\prime \prime}+3 x y^{\prime}-15 y=x^{4} e^{x}, y(1)=$ $1 ; y^{\prime}(1)=0$.

Q5: Evaluate the integral using the method of Complex Integration: $\int_{0}^{2 \pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}} ;-1<a<1$.

