Mid-Semester Examination

Quantum Mechanics II (PHY F311)
Date : 05.11.2022
Maximum Marks : 90
Time : 90 minutes
Q1a) Let \hat{A} be a Hermitian operator and \hat{B} an anti-Hermitian operator. What can you say about the nature (Hermitian, anti-Hermitian, neither) of i) $[\hat{A}, \hat{B}]$
ii) $\{\hat{A}, \hat{B}\}$?
b) Prove that the expectation value of an observable is guaranteed to be positive if and only if all its eigenvalues are positive.
c) Prove that the time evolution operator for a time-independent Hamiltonian can be expressed as

$$
\sum_{\mathrm{n}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \hbar}\left|\phi_{\mathrm{n}}><\phi_{\mathrm{n}}\right|
$$

where $\mathrm{E}_{\mathrm{n}} \& \mid \phi_{\mathrm{n}}>$ are the energy eigenvalues and the corresponding energy eigenvectors.
d) Let $U \& U^{\prime}$ be two disjoint subspaces (the only common element is the null vector) of a vector space, that are not mutually orthogonal. Let $\hat{\mathrm{P}}_{\mathrm{U}} \& \hat{\mathrm{P}}_{\mathrm{U}^{\prime}}$ be the orthogonal projection operators on these subspaces. Do $\hat{\mathrm{P}}_{\mathrm{U}} \& \hat{\mathrm{P}}_{\mathrm{U}}$, commute? Will they commute if U \& U^{\prime} are mutually orthogonal?
e) Prove that the z-component of the angular momentum, $\hat{\mathrm{L}}_{z}$, of a particle moving in a potential that depends on the z coordinate alone (i.e., $\hat{\mathrm{H}}=\overrightarrow{\mathrm{P}}^{2} / 2 \mathrm{~m}+\mathrm{V}(\mathrm{z})$) is a constant of motion.

Q2) Calculate the uncertainties $\delta \mathrm{S}_{\mathrm{x}} \& \delta \mathrm{~S}_{\mathrm{y}}$ of the spin operators $\hat{\mathrm{S}}_{\mathrm{x}} \& \hat{\mathrm{~S}}_{\mathrm{y}}$ in the state ${ }_{+}+>$and show that they satisfy the generalized uncertainty relation.

Q3) Consider a 3-states quantum system with a state vector

$$
\left.\left|\psi>=\left|\phi_{1}>+\mathrm{i}\right| \phi_{2}>-\mathrm{i}\right| \phi_{3}\right\rangle
$$

where $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle \& \mid \phi_{3}>$ are eigenvectors of an observable $\hat{\mathrm{A}}$ with eigenvalues $\mathrm{a}, 2 \mathrm{a}$ and a respectively. These vectors form an orthonormal basis.
a) If the value ' a ' is obtained after the measurement of the observable \hat{A}, then what will be the state after the measurement?
b) Consider another observable \hat{B} given as

$$
\hat{\mathrm{B}}=\mathrm{b}\left|\phi_{1}><\phi_{2}\right|+\mathrm{b}\left|\phi_{2}><\phi_{1}\right|+\mathrm{b}\left|\phi_{3}><\phi_{3}\right|
$$

If this observable is measured on the system after the measurement of $\hat{\mathrm{A}}$ has resulted in the value ' a ', then
i) What are the possible values one will get as the outcome of the measurement ii) what are their probabilities
c) If the measured value of \hat{B} in part (b) is ' b ', then what is the state ket after this measurement?
d) If now, observable \hat{A} is measured again on the state after the measurement of \hat{B} has resulted in the value ' b ', what is the probability of getting the earlier measured value ' a '? Hence, what can you say about the compatibility of the two observables?

Q4) The quantum virial for a particle, which is an operator, is defined as

$$
\hat{\mathrm{G}}=\hat{\overrightarrow{\mathrm{X}}} \cdot \hat{\overrightarrow{\mathrm{P}}}
$$

a) Derive the Heisenberg equation of motion for the virial as

$$
\frac{\mathrm{d} \hat{\mathrm{G}}}{\mathrm{dt}}=2 \hat{\mathrm{~T}}-\hat{\tilde{\mathrm{X}}} \cdot \vec{\nabla} \hat{\mathrm{~V}}
$$

b) Using the above equation, show that in an energy eigenstate, and in Coulomb potential $V(\overrightarrow{\mathrm{x}})=-\frac{\mathrm{k}}{\mathrm{r}} \quad(\mathrm{r}=|\overrightarrow{\mathrm{x}}|)$, the expectation value of the $K E$ is negative half of the expectation value of the potential energy:

$$
\begin{equation*}
\langle\mathrm{T}\rangle=-\frac{\langle\mathrm{V}\rangle}{2} \tag{15+5}
\end{equation*}
$$

Or
a) Obtain the Heisenberg equations of motion of a charged particle moving in a magnetic field (no electric field).
b) Under what conditions, will the expectation value of position describe the classical trajectory? (5)

Useful formulas:

$$
\begin{aligned}
& \hat{\mathrm{S}}_{\mathrm{x}}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \hat{\mathrm{S}}_{\mathrm{y}}=\frac{\hbar}{2}\left(\begin{array}{rr}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) ;\left|\mathrm{s}_{\mathrm{x}} ; \pm>=\frac{1}{\sqrt{2}}[|+> \pm|->] ;\right| \mathrm{s}_{\mathrm{y}} ; \pm>=\frac{1}{\sqrt{2}}[|+> \pm \mathrm{i}|->] \\
& \frac{\mathrm{d} \hat{\mathrm{~A}}_{\mathrm{H}}}{\mathrm{dt}}=\frac{1}{\mathrm{i} \hbar}\left[\hat{\mathrm{~A}}_{\mathrm{H}}, \hat{\mathrm{H}}\right] ; \hat{\mathrm{H}}_{\mathrm{em}}=\frac{1}{2 \mathrm{~m}}(\overrightarrow{\mathrm{P}}-\mathrm{q} \overrightarrow{\mathrm{~A}})^{2}+\mathrm{qV} ; \hat{\mathrm{U}}(\mathrm{t})=\mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \\
& (\delta \mathrm{A})^{2}(\delta \mathrm{~B})^{2} \geq \frac{1}{4}|<[\hat{\mathrm{A}}, \hat{\mathrm{~B}}]>|^{2}
\end{aligned}
$$

