## Comprehensive Examination

## Quantum Mechanics II (PHY F311)

Date : 30.12.2022
Maximum Marks : 120
Time : 3 Hours

## Closed-Book (50 Marks)

Q1) Show that the harmonic oscillator creation operator $a^{+}$does not have any eigenvectors. That is, show that the only vector $\mid \lambda>$ that satisfies the eigenvalue equation

$$
\mathrm{a}^{+}|\lambda>=\lambda| \lambda>
$$

is the null vector.

Q2) Consider a spin- $1 / 2$ particle confined in a rigid-one dimensional box of length $\ell(0$ to $\ell)$. The normalized wave function of the particle is given by

$$
\sqrt{\frac{2}{\ell}}\binom{\frac{1}{2} \sin \frac{\pi \mathrm{x}}{\ell}}{\frac{\sqrt{3}}{2} \sin \frac{2 \pi \mathrm{x}}{\ell}}
$$

a) What is the probability of finding the particle with spin down?
b) What is the mean value of the energy of the particle?

Q3) Obtain the matrix representation of $\hat{S}_{y}$ for a spin-1 particle in the eigenbasis of $\hat{S}_{z}$. Hence find the eigenvector of $\hat{S}_{\mathrm{y}}$ with eigenvalue -1, i.e., find $\mid 1,-1>_{\mathrm{y}}$.

Q4) Obtain the angular representation

$$
\mathrm{Y}_{\ell}^{-\ell}(\theta, \phi)=<\theta, \phi \mid \ell,-\ell>
$$

by using the fact that $\hat{\mathrm{L}}_{-} \mid \ell,-\ell>=0$. You may not normalize $\mathrm{Y}_{\ell}^{-\ell}(\theta, \phi)$.

Q5) Show that the ket

$$
\left|\mathrm{j}_{1}, \mathrm{j}_{2} ; \mathrm{j}_{1}, \mathrm{j}_{2}>=\left|\mathrm{j}_{1}, \mathrm{j}_{1}>\otimes\right| \mathrm{j}_{2}, \mathrm{j}_{2}>\right.
$$

from the simultaneous eigenbasis of the commuting operators $\left\{\overrightarrow{\mathbf{J}}_{1}^{2}, \overrightarrow{\mathbf{J}}_{2}^{2}, \mathrm{~J}_{1 \mathrm{z}}, \mathrm{J}_{2 \mathrm{z}}\right\}$ is an eigenvector of $\overrightarrow{\mathrm{J}}^{2}$, where $\overrightarrow{\mathbf{J}}=\overrightarrow{\mathrm{J}}_{1}+\overrightarrow{\mathrm{J}}_{2}$. What is the eigenvalue?

Q6) Calculate the first order correction to the energy of the ground state of the Harmonic oscillator, when an an-harmonic potential energy term $\alpha \mathrm{x}^{3}+\beta \mathrm{x}^{4}$ acts as a perturbation to the harmonic potential $\frac{1}{2} m \omega^{2} x^{2}$.
(8)

## Useful Formulas :

$$
\begin{aligned}
& \mathrm{J}_{ \pm}|\mathrm{j}, \mathrm{~m}>=\hbar \sqrt{\mathrm{j}(\mathrm{j}+1)-\mathrm{m}(\mathrm{~m} \pm 1)}| \mathrm{j}, \mathrm{~m} \pm 1> \\
& \hat{\mathrm{L}}_{ \pm}=\hbar \mathrm{e}^{ \pm \mathrm{i} \phi}\left( \pm \frac{\partial}{\partial \theta}+\mathrm{i} \cot \theta \frac{\partial}{\partial \phi}\right)
\end{aligned}
$$

## Open Book (70 Marks)

Q1a) Show that

$$
\int_{-\infty}^{\infty} \mathrm{dx}|\mathrm{x}+\mathrm{a}><\mathrm{x}+\mathrm{a}|=\mathrm{I}
$$

Using the above, show that $\hat{\mathrm{T}}(\mathrm{a}) \hat{\mathrm{T}}^{+}(\mathrm{a})=\mathrm{I}$.
b) Let a particle have a potential energy function $\mathrm{V}(\overrightarrow{\mathrm{x}})$ that has an absolute minima $\mathrm{V}_{\min }$, i.e., $\mathrm{V}(\overrightarrow{\mathrm{x}}) \geq \mathrm{V}_{\text {min }}$. Show that the expectation value of potential energy cannot be less than $\mathrm{V}_{\text {min }}$ in any state, i.e., $\langle\psi| \mathrm{V}|\psi\rangle \geq \mathrm{V}_{\text {min }}$.
c) Calculate $\hat{\mathrm{x}}(\mathrm{t})=\mathrm{U}^{+}(\mathrm{t}) \hat{\mathrm{x}}(0) \mathrm{U}(\mathrm{t})$ for a free particle by directly calculating the RHS.
d) Find the uncertainty of energy in a general coherent state $\mid \lambda>$ of the one-dimensional harmonic oscillator.
e) Prove that the Virial operator $\hat{G}=\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{p}}$ commutes with all three components of the angular momentum operator $\overrightarrow{\mathrm{L}}$. Hence show that the operator remains invariant under rotation, i.e., it is a scalar operator.
[If you are loath to provide a general proof, you may calculate the commutation with only one of the components, $L_{x}$,say, and generalize]
f) If you add two spins angular momenta, $\vec{S}_{1} \& \vec{S}_{2}$, the first one of spin 1 and the second of spin $1 / 2$, then
i) express the ket $\mid 1,1 / 2 ; 3 / 2,3 / 2>$ from the $\left\{\mid s_{1}, s_{2} ; s, m>\right\}$ basis in terms of the $\left\{\mid \mathrm{s}_{1}, \mathrm{~s}_{2} ; \mathrm{m}_{1}, \mathrm{~m}_{2}>\right\}$ basis.
ii) Which kets from the $\left\{\mid \mathrm{s}_{1}, \mathrm{~s}_{2} ; \mathrm{m}_{1}, \mathrm{~m}_{2}>\right\}$ basis will occur in the expansion of the ket $\mid 1,1 / 2 ; 1 / 2,-1 / 2>$ ? No need to calculate the expansion. $(3+4)$
g) Consider a one-dimensional harmonic oscillator. Let a perturbative Hamiltonian of the following form

$$
\hat{\mathrm{H}}_{1}=\varepsilon \sum_{\mathrm{n}=1}^{\infty} \frac{1}{\sqrt{\mathrm{n}}}[|0><\mathrm{n}|+|\mathrm{n}><0|]
$$

be added to the unperturbed Hamiltonian. Calculate the first non-zero correction to the energy of the ground state.
[You may use the summation formula : $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{2}}=\frac{\pi^{2}}{6}$ ]
h) Consider a particle moving on the surface of a sphere of radius $R$. The Hamiltonian, which is only the kinetic energy, is given by

$$
\hat{\mathrm{H}}=\frac{\hat{\hat{\mathrm{L}}}^{2}}{2 \mathrm{mR}^{2}}
$$

Now, a perturbative potential energy, of the form $\omega \hat{L}_{z}$, is added to the Hamiltonian (for example, if the particle has a charge and a magnetic field Bẑ is applied).

Obtain the Heisenberg equations of motion for the three components of angular momentum. Is any component of angular momentum conserved?

Q2) Consider a two-states system with a Hamiltonian

$$
\hat{\mathrm{H}}=\mathrm{E}_{0}(|1><1|+|2><2|)+\delta(|1><2|+|2><1|)
$$

a) Calculate the energy eigenvalues and eigenvectors.
b) If $\delta \ll \mathrm{E}_{0}$, the first bracket on the RHS above can be termed as $\hat{\mathrm{H}}_{0}$ and the second bracket as $\hat{H}_{1}$ (the constants are taken with the brackets), so that $\hat{H}_{0}$ is the unperturbed Hamiltonian and $\hat{H}_{1}$ is the perturbation. Now apply first order degenerate perturbation theory to the eigenvalues of $\hat{\mathrm{H}}_{0}$ to obtain i) first order-corrected energy levels and ii) the correct zeroth order eigenvectors when the perturbation is removed. Compare these to those of the full Hamiltonian calculated in part (a). (10)

