Birla Institute of Technology and Science, Pilani Mid-Semester Examination Quantum Mechanics II (PHY F311)

Date: 09.10.2023	Time: 90 Minutes
Dale. 09.10.2023	Time. 30 Windles

Q1a) Prove that an orthonormal set of vectors, $|\phi_1 \rangle$, $|\phi_2 \rangle$,..., $|\phi_n \rangle$, is linearly independent.

b) Prove that a unitary operator \hat{U} maps an orthonormal set of vectors to another orthonormal set of vectors. Hence show that a unitary operator maps an orthonormal basis to another orthonormal basis.

c) Let \hat{A} be a Hermitian operator. Prove that the expectation value of \hat{A}^2 in any arbitrary state $|\psi\rangle$ is positive, i.e.,

$$\langle \psi | \hat{A}^2 | \psi \rangle \geq 0$$

What can you say about the same expectation value if \hat{A} were an anti-Hermitian operator? (6+8+6)

Q2a) Prove that if two operators have a complete set of simultaneous eigenvectors, then they will commute.

b) Let $\hat{A}, \hat{B} \& \hat{C}$ be three operators such that both $\hat{B} \& \hat{C}$ commute with \hat{A} but they do not commute with each other. Then prove that \hat{A} must necessarily have degenerate eigenvalues. (6+8)

[**Hint**: Assume to the contrary that all the eigenvalues of \hat{A} are non-degenerate and arrive at a contradiction in the light of the statement of part (a)]

Q3a) Using the commutation relation of the three spin operators \hat{S}_x , \hat{S}_y & \hat{S}_z , calculate the following commutator

$$[\vec{S} \cdot \hat{n}, \vec{S} \cdot \hat{m}]$$
 ($\hat{n} \& \hat{m}$ are unit vectors)

and show that it is of the form $i\hbar \vec{S} \cdot \hat{p}$ where $\hat{p} = \hat{n} \times \hat{m}$.

[You may use the compact commutatitor formula $[\hat{S}_{i}, \hat{S}_{j}] = i\hbar\epsilon_{ijk}\hat{S}_{k}$] (8)

In the following part , $\hat{S}_n \& \hat{S}_m$ are short-hand notations for $\vec{S} \cdot n \& \vec{S} \cdot \hat{m}$ respectively.

b) In view of the result of part (a) and the generalized uncertainty relation, what can you say about the lower bound for the uncertainty product $\Delta S_n \cdot \Delta S_m$ in the states $|\hat{n}; \pm \rangle$ or $|\hat{m}; \pm \rangle$? Show that the uncertainty product $\Delta S_n \cdot \Delta S_m$ in these states is actually equal to the lower bound predicted from the uncertainty relation. You need not do any detailed calculations in answering the above. (12)

Q4) Let $\hat{T}(\delta x)$ be the infinitesimal translation operator along the x-axis (1-d motion).

a) Calculate $\hat{T}^{+}(\delta x)\hat{X}\hat{T}(\delta x) \& \hat{T}^{+}(\delta x)\hat{P}\hat{T}(\delta x)$ to first order in the infinitesimal quantity δx . (8)

b) Using the result of part (a) calculate the change in the expectation values of both position and momentum as a result of this infinitesimal translation of a state vector $|\psi>$. (8)

Q5) Consider a three-states system for which an observable \hat{A} has eigenvalues a, a, and 2a with corresponding orthonormal eigenvectors $|\phi_1 \rangle$, $|\phi_2 \rangle \otimes |\phi_3 \rangle$. The Hamiltonian of the system in this eigenbasis of \hat{A} is given by

 $\hat{H} = b | \phi_1 > < \phi_1 | + b | \phi_2 > < \phi_3 | + b | \phi_3 > < \phi_2 | \quad \text{(a and b are real constants)}$

At t = 0, the state of the system is given by

$$|\psi(0)\rangle = |\phi_{2}\rangle$$

a) Find the state at time t, i.e., $|\psi(t)\rangle$ in terms of the eigenbasis of \hat{A} . (12)

b) Find the expectation value of the observable \hat{A} both at t = 0 and at time t. (8)

[Hint: You need the energy eigenbasis for calculating time evolution.]
