Comprehensive Examination

Quantum Mechanics II (PHY F311)

Closed Book

Q1. Prove that if two operators $\hat{\mathrm{A}} \& \hat{\mathrm{~B}}$ commute, then an eigen-subspace of one will be invariant (closed) under the action of the other. What is its implication when the eigenvector of one of the two operators is non-degenerate?

Q2. Prove that all the eigenvalues of a unitary operator are of unit absolute value and eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.

Q3. Calculate the commutator

$$
\left[\hat{\pi}_{x}, \hat{\pi}_{y}\right]
$$

and relate it to the magnetic field operator. Here, $\vec{\pi}$ is the kinetic momentum operator of a charged particle in an electromagnetic field.

Q4. Obtain the time-evolution of a coherent state and show that

$$
\begin{equation*}
|\alpha ; \mathrm{t}>=| \alpha \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}> \tag{8}
\end{equation*}
$$

Q5. By using the condition

$$
\hat{\mathrm{L}}_{-} \mathrm{Y}_{\ell}^{-\ell}(\theta, \phi)=0
$$

and using the ϕ dependence of the spherical harmonics, determine $\mathrm{Y}_{\ell}^{-\ell}(\theta, \phi)$. You need not determine the normalization constant.

Q6. Calculate the second order correction to the energy of the $n^{\text {th }}$ energy state $\mid n>$ of a onedimensional harmonic oscillator due to a perturbing potential term αx^{3}.

Relevant formulas:

1. $\vec{\pi}=\overrightarrow{\mathrm{p}}-\mathrm{q} \overrightarrow{\mathrm{A}}$
2. $\hat{\mathrm{L}}_{-}=\mathrm{i} \hbar \mathrm{e}^{-\mathrm{i} \phi}\left(\mathrm{i} \frac{\partial}{\partial \theta}+\cot \theta \frac{\partial}{\partial \phi}\right)$

Open Book

Q1) Consider a two-dimensional anharmonic oscillator with the Hamiltonian

$$
\hat{H}=\frac{1}{2 m}\left(\hat{\mathrm{p}}_{\mathrm{x}}^{2}+\hat{\mathrm{p}}_{\mathrm{y}}^{2}\right)+\frac{1}{2} m \omega^{2}\left(\hat{\mathrm{x}}^{2}+\hat{\mathrm{y}}^{2}\right)+\delta m \omega^{2} \hat{\mathrm{x}} \hat{\mathrm{y}}
$$

Now, consider the following operators

$$
\hat{X}=\frac{1}{\sqrt{2}}(\hat{\mathrm{x}}+\hat{\mathrm{y}}) ; \hat{\mathrm{Y}}=\frac{1}{\sqrt{2}}(\hat{\mathrm{x}}-\hat{\mathrm{y}}) ; \hat{\mathrm{P}}_{\mathrm{x}}=\frac{1}{\sqrt{2}}\left(\hat{\mathrm{p}}_{\mathrm{x}}+\hat{\mathrm{p}}_{\mathrm{y}}\right) ; \hat{\mathrm{P}}_{\mathrm{y}}=\frac{1}{\sqrt{2}}\left(\hat{\mathrm{p}}_{\mathrm{x}}-\hat{\mathrm{p}}_{\mathrm{y}}\right)
$$

a) Using Heisenberg equations of motion for these operators, show that

$$
\begin{array}{ll}
\text { i) } \frac{d \hat{X}}{d t}=\frac{\hat{P}_{x}}{m} ; \frac{d \hat{P}_{x}}{d t}=-m \omega_{x}^{2} \hat{X} & \left(\omega_{x}=\omega \sqrt{1+\delta}\right) \tag{20}\\
\text { ii) } \frac{d \hat{Y}}{d t}=\frac{\hat{P}_{y}}{m}: \frac{d \hat{P}_{y}}{d t}=-m \omega_{y}^{2} \hat{Y} & \left(\omega_{y}=\omega \sqrt{1-\delta}\right)
\end{array}
$$

b) How would you interpret the above equations of motion.
(5)

Q2a) What are the possible values one would get if $J_{x} \& J_{y}$ are measured in the state $\mid j \mathrm{~m}>$, which is an eigenstate of $\mathrm{J}^{2} \& \mathrm{~J}_{\mathrm{z}}$? Answer with adequate explanation.
b) What are the expectation values $<\mathrm{J}_{\mathrm{x}}>\&<\mathrm{J}_{\mathrm{y}}>$ in the state $\mid \mathrm{jm}>$?
c) Express $\left(J_{x}^{2}+J_{y}^{2}\right)$ in terms of $J_{+} \& J_{-}$and hence calculate $\left(J_{x}^{2}+J_{y}^{2}\right) \mid j m>$. Using the result, calculate $\left(J_{x}^{2}+J_{y}^{2}+J_{z}^{2}\right) \mid j \mathrm{~m}>$, and explain the result you get.
d) Using the commutators

$$
\left[\hat{\mathrm{L}}_{\mathrm{z}}, \hat{\mathrm{P}}_{\mathrm{x}}\right]=\mathrm{i} \hbar \hat{\mathrm{P}}_{\mathrm{y}} \&\left[\hat{\mathrm{~L}}_{\mathrm{z}}, \hat{\mathrm{P}}_{\mathrm{y}}\right]=-\mathrm{i} \hbar \hat{\mathrm{P}}_{\mathrm{x}}
$$

show that

$$
\begin{align*}
& \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \phi \hat{\mathrm{~L}}_{\mathrm{z}}} \hat{\mathrm{P}}_{\mathrm{x}} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \phi \hat{\mathrm{~L}}_{\mathrm{z}}}=\cos \phi \hat{\mathrm{P}}_{\mathrm{x}}-\sin \phi \hat{\mathrm{P}}_{\mathrm{y}} \\
& \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \phi \hat{\mathrm{~L}}_{\mathrm{z}}} \hat{\mathrm{P}}_{\mathrm{x}} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \phi \hat{\mathrm{~L}}_{\mathrm{z}}}=\sin \phi \hat{\mathrm{P}}_{\mathrm{x}}+\cos \phi \hat{\mathrm{P}}_{\mathrm{y}} \tag{12}
\end{align*}
$$

(Use Hausdorff-Baker-Campbell formula and get the pattern after a few terms in the series)
Q3) Consider a two-dimensional isotropic harmonic oscillator with a small coupling term that acts as the perturbation. The complete Hamiltonian is given by

$$
\hat{H}=\frac{1}{2 m}\left(\hat{\mathrm{p}}_{\mathrm{x}}^{2}+\hat{\mathrm{p}}_{\mathrm{y}}^{2}\right)+\frac{1}{2} m \omega^{2}\left(\hat{\mathrm{x}}^{2}+\hat{\mathrm{y}}^{2}\right)+\delta \hat{\mathrm{x}}^{3} \hat{\mathrm{y}}
$$

a) Calculate the first order splitting of the second energy level.
b) Will there be a first order shift in the first energy level?

