Comprehensive Examination

Quantum Mechanics II (PHY F311)

Date : 07.12.2023	Maximum Marks : 120	Time : 3 Hours

Closed Book

Q1. Prove that if two operators $\hat{A} \& \hat{B}$ commute, then an eigen-subspace of one will be invariant (closed) under the action of the other. What is its implication when the eigenvector of one of the two operators is non-degenerate? (8)

Q2. Prove that all the eigenvalues of a unitary operator are of unit absolute value and eigenvectors corresponding to distinct eigenvalues are mutually orthogonal. (8)

Q3. Calculate the commutator

$$[\hat{\pi}_{x}, \hat{\pi}_{y}]$$

and relate it to the magnetic field operator. Here, $\vec{\pi}$ is the kinetic momentum operator of a charged particle in an electromagnetic field. (8)

Q4. Obtain the time-evolution of a coherent state and show that

$$|\alpha;t\rangle = |\alpha e^{-i\omega t}\rangle$$
(8)

Q5. By using the condition

$$\hat{L}_{-}Y_{\ell}^{-\ell}(\theta,\phi)=0$$

and using the ϕ dependence of the spherical harmonics, determine $Y_{\ell}^{-\ell}(\theta, \phi)$. You need not determine the normalization constant. (8)

Q6. Calculate the second order correction to the energy of the n^{th} energy state $|n\rangle$ of a onedimensional harmonic oscillator due to a perturbing potential term αx^3 . (10)

Relevant formulas:

1.
$$\vec{\pi} = \vec{p} - q\vec{A}$$

2. $\hat{L}_{-} = i\hbar e^{-i\phi} \left(i\frac{\partial}{\partial\theta} + \cot\theta \frac{\partial}{\partial\phi} \right)$

Open Book

Q1) Consider a two-dimensional anharmonic oscillator with the Hamiltonian

$$\hat{H} = \frac{1}{2m} (\hat{p}_x^2 + \hat{p}_y^2) + \frac{1}{2} m\omega^2 (\hat{x}^2 + \hat{y}^2) + \delta m\omega^2 \hat{x} \hat{y}$$

Now, consider the following operators

$$\hat{X} = \frac{1}{\sqrt{2}}(\hat{x} + \hat{y}); \ \hat{Y} = \frac{1}{\sqrt{2}}(\hat{x} - \hat{y}); \ \hat{P}_x = \frac{1}{\sqrt{2}}(\hat{p}_x + \hat{p}_y); \ \hat{P}_y = \frac{1}{\sqrt{2}}(\hat{p}_x - \hat{p}_y)$$

a) Using Heisenberg equations of motion for these operators, show that

i)
$$\frac{d\hat{X}}{dt} = \frac{\hat{P}_x}{m}$$
; $\frac{d\hat{P}_x}{dt} = -m\omega_x^2\hat{X}$ ($\omega_x = \omega\sqrt{1+\delta}$)
(20)
ii) $\frac{d\hat{Y}}{dt} = \frac{\hat{P}_y}{m}$; $\frac{d\hat{P}_y}{dt} = -m\omega_y^2\hat{Y}$ ($\omega_y = \omega\sqrt{1-\delta}$)

b) How would you interpret the above equations of motion. (5)

Q2a) What are the possible values one would get if $J_x \& J_y$ are measured in the state $|j m \rangle$, which is an eigenstate of $J^2 \& J_z$? Answer with adequate explanation. (5)

b) What are the expectation values $< J_{\rm x} > \& < J_{\rm y} > ~$ in the state $\mid j \mid m >$? (5)

c) Express $(J_x^2 + J_y^2)$ in terms of $J_+ \& J_-$ and hence calculate $(J_x^2 + J_y^2)|j m >$. Using the result, calculate $(J_x^2 + J_y^2 + J_z^2)|j m >$, and explain the result you get. (6)

d) Using the commutators

$$[\hat{L}_{z}, \hat{P}_{x}] = i\hbar \hat{P}_{y} \& [\hat{L}_{z}, \hat{P}_{y}] = -i\hbar \hat{P}_{x}$$

show that

$$e^{\frac{i}{\hbar}\phi\hat{L}_{z}}\hat{P}_{x}e^{-\frac{i}{\hbar}\phi\hat{L}_{z}} = \cos\phi\hat{P}_{x} - \sin\phi\hat{P}_{y}$$
$$e^{\frac{i}{\hbar}\phi\hat{L}_{z}}\hat{P}_{x}e^{-\frac{i}{\hbar}\phi\hat{L}_{z}} = \sin\phi\hat{P}_{x} + \cos\phi\hat{P}_{y}$$

(Use Hausdorff-Baker-Campbell formula and get the pattern after a few terms in the series) (12)

Q3) Consider a two-dimensional isotropic harmonic oscillator with a small coupling term that acts as the perturbation. The complete Hamiltonian is given by

$$\hat{H} = \frac{1}{2m} (\hat{p}_x^2 + \hat{p}_y^2) + \frac{1}{2} m \omega^2 (\hat{x}^2 + \hat{y}^2) + \delta \hat{x}^3 \hat{y}$$
a) Calculate the first order splitting of the second energy level. (14)
b) Will there be a first order shift in the first energy level? (3)

.