# Birla Institute of Technology \& Science, Pilani Semester I (Session 2016-17) <br> Mid Semester Examination (CB) STATISTICAL MECHANICS 

Max. Time: 1.5 hrs
Max. Marks : 60
Q1. Suppose a thermal system of N independent particles in d-dimensions at a fixed temperature $T$. The single particle Hamiltonian of the system is given as, $h=A|\vec{p}|^{m}+B|\vec{q}|^{n}$. Compute the (ensemble) average energy $\langle\epsilon>$ of each particle by applying equipartition theorem, $\left\langle x_{i} \frac{\partial h}{\partial x_{j}}\right\rangle=\delta_{i j} K T$. Where $x_{i}$ denotes the coordinates $q \& p . \quad[\mathbf{1 0}]$

Q2. Consider a system of N (distinguishable) particles, where the possible energy values for a single particle are $0, \epsilon_{1}, \ldots, \epsilon_{n}$. The energy value $\epsilon_{a}$ is $g_{a}$ - fold degenerate, and the ground state is non-degenerate. (i) If $p_{0}(T)$ is the probability for a single particle to be in the ground state, determine $p_{0}(T \rightarrow \infty)$ and $p_{0}(T \rightarrow 0)$. (ii) Calculate average energy $\langle\epsilon\rangle$ per particle at $T \rightarrow \infty . \quad[5+\mathbf{3}]$

Q3. N diatomic (distinguishable) molecules are stuck on a metal surface. Each molecule can either lie flat on the surface, in which case it must be aligned to one of two directions, $+x$ and $+y$, or it can stand up along the $+z$ direction. There is an energy cost of $\epsilon(>0)$ associated with a molecule standing up, and zero energy for molecules lying flat along x or y directions. Suppose $N_{z}$ number of molecules stand up along $z$-direction at a temperature $T$. Use microcanonical ensemble to determine the ratio of $\frac{N_{z}}{N}$ for which entropy of the system becomes maximum. (Use Stirling approximation, $N!=N \ln N-N$.)

Q4. Consider a rod-shaped diatomic molecule with moment of inertia $I$, and a (electric) dipole moment $\mu$. The contribution of the rotational degrees of freedom to the Hamiltonian is given by, $H=\frac{p_{\theta}^{2}}{2 I}+\frac{p_{\phi}^{2}}{2 I \sin ^{2} \theta}-\mu E \cos \theta$. Where $E$ is an external electric field. $\theta$ \& $\phi$ are the usual polar and azimuthal angles, receptively, while $p_{\theta} \& p_{\phi}$ are their conjugate momenta. (a) Calculate the classical partition function $Q_{1}(T)$ of each dipole. (b) Obtain the average polarization, $P=<\mu \cos \theta>$ of each dipole. (You can use, $\int_{0}^{\infty} e^{-c x^{2}} d x=\frac{\sqrt{\pi}}{2 \sqrt{c}} ; \int_{0}^{\infty} e^{-x} x^{n-1} d x=\Gamma(n) ; \Gamma(1 / 2)=\sqrt{\pi}$.) $\quad[\mathbf{1 2}+\mathbf{6}]$

Q5. N (non-interacting) hydrogen molecules $H_{2}$ absorbed on a (two-dimensional) flat surface are in thermal equilibrium at temperature $T$. The rotational motion of each molecule is confined to the plane of the surface. The quantum state of the planar rotation is specified by a single quantum number $m$ which can take on the values 0 , $\pm 1, \pm 2, \pm 3, \ldots, \pm \infty$. There is one quantum state for each allowed value of $m$. The energies of the rotational states are given by $\epsilon_{m}=\left(\hbar^{2} / 2 I\right) m^{2} \equiv \epsilon m^{2}$, where $I$ is a moment of inertia. Determine the rotational energy contribution to the heat capacity $C$ of the gas at high temperature $T$, where $K T \gg \epsilon$. In this limit, sum can be replaced by integration on variable $m$.

