BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER 2023-24
 PHY F312: Statistical Mechanics
 Comprehensive Examination (Part B)
 Open Book

Total marks: 55
Time: 120 mins

Useful Integrals

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \\
\int_{-\infty}^{\infty} x^{n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 . .(n-1) \pi^{1 / 2}}{2^{n / 2} a^{(n+1) / 2}} n=0,2,4 . . \\
\int_{0}^{\infty} x^{n} e^{-a x^{2}} d x=\frac{\frac{n-1}{2}!}{2 a^{(n+1) / 2}} \quad n=1,3,5 \ldots \\
\mathcal{G}_{\nu}(z)=\frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1} d x}{z^{-1} e^{x}-1} \\
\mathcal{F}_{\nu}(z)=\frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1} d x}{z^{-1} e^{x}+1}
\end{gathered}
$$

Ensembles

1. Consider a system of identical particles maintained at a temperature T and a chemical potential μ by a reservoir. Each particle can exist in two states with energies $\pm \epsilon$. Calculate the grand partition function, mean number of particles and mean number of particles occupying the two states. [5]
2. A particle can have 4 energies $\epsilon=-3 \alpha / 2,-\alpha / 2, \alpha / 2,3 \alpha / 2$. Find
(a) The single particle canonical partition function Z_{1}.
(b) For N such distinguishable particles find the partition function Z_{N}.
(c) Find mean energy and standard deviation in energy.
(d) Find the specific heat $C_{V}[10]$

Fermions

3. Consider a 2 particle state $|a b\rangle$ where a and b are quantum numbers of the two particles. Show that the state $\frac{|a b\rangle+|b a\rangle}{\sqrt{2}}$ is inconsistent with Pauli exclusion principle but the state $\frac{|a b\rangle-|b a\rangle}{\sqrt{2}}$ is consistent with it. [2]
4. Consider a gas of N fermions at temperature T. Assume that the degeneracy of states

$$
g(E) d E=\mathcal{D} d E
$$

where \mathcal{D} is a constant.
(a) At $T=0$ write the expressions for N and hence obtain the expression for the Fermi energy E_{F}.
(b) At $T=0$ find the expression for total energy E in terms of E_{F}.
(c) When $e^{\mu \beta} \gg 1$ ignore the +1 in the denominator of the Fermi function and find and expression of N. Hence express the condition $e^{\mu \beta} \gg 1$ (degenerate gas) as a condition on T and E_{F}.
(d) Find the expression for Pressure of this gas at temperature $T[2+2+4+5]$
5. For an ideal Fermi gas of spin s particles at temperature T, show that when the temperature is high (small z) and $n=N / V$ is also small.

$$
P V=N k T\left(1+a \frac{N \lambda_{T h}^{3}}{V}\right)
$$

What is the value of the constant a ? You may use the approximations

$$
\left(\mathcal{F}_{5 / 2}(z) \approx z-\frac{z^{2}}{2^{5 / 2}} \quad \& \quad \mathcal{F}_{3 / 2}(z) \approx z-\frac{z^{2}}{2^{3 / 2}}\right)
$$

Bosons

6. Consider an ideal Bose gas consisting of N particles at temperature T where the density of states $g(E)$ is given by $g(E) d E=\alpha V E^{r} d E$ where α is a constant. Calculate the (a) grand partition function (b) Calculate the temperature T_{c} at which BEC transition takes place (c) Is there BEC when $r=0$? [6]
7. Using the second law of thermodynamics, Calculate the entropy, Helmholtz free energy, Gibbs free energy, and enthalpy of a photon gas in a cavity of volume V at temperature T. [6]
8. The dispersion relationship (relation between the frequency ω and the momentum p for waves in a solid is given by $\omega(p)=A p^{s}$. What is the Debye cutoff temperature in D dimensions.
For $D=3$ how does specific heat of the solid depend on temperature at low temperatures and very high temperatures. [8]
