BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI COMPREHENSIVE EXAMINATION (Closed Book)
 I Semester 2016-17
 Max Time: 60 min
 COMPUTATIONAL PHYSICS (PHY F313)

DATE: 14-12-2016
Max Marks: 50

1. Solution of Laplace equation: [3×10]
(a) Suggest a numerical method to find out the solution of Laplace equation, $\nabla^{2} V(\boldsymbol{r})=0$ in 2D.
(b) How can you justify the basic assumptions of Jacobi Relaxation method that is sometimes used to find the potential at the required point.
(c) Write down the psuedo code to execute the JR (or any other numerical method) method.
2. The charging of a capacitor in an $R C$ circuit is represented by

$$
R \frac{d q}{d t}=V-\frac{q}{C} \quad R=100 \Omega, C=150 \mu F, V=12 V
$$

with $q=0, t=0$. Use Euler method to solve (in 5 steps) and find out the $q(t=0.005 s$). Do you get the saturation in $q(t)$? Justify your answer.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI COMPREHENSIVE EXAMINATION (Open Source)
 I Semester 2016-17

DATE: 14-12-2016
Max Marks: 70

COMPUTATIONAL PHYSICS (PHY F313)

IMPORTANT

- You have to solve these problems by the codes you have written for your assignments.
- The in-built functions of $M A T L A B$ etc. are not allowed to execute your codes.

1. Solving the differential equations: [30]
(a) The two coupled I order equations

$$
\frac{d y}{d t}=p \quad \frac{d p}{d t}=-4 \pi^{2} y
$$

represent SHM with period 1. Using your RK-4 codes, solve these equations with any particular initial conditions and investigate the accuracy with which system returns to its initial state at integral values of t.
(b) Solve the charging of capacitor problem (Q2 I part) by Improved Euler method. Plot the curve.
2. Consider a protein on a simple square lattice. The energy of model is defined as,

$$
E=\sum_{\langle i, j\rangle} \delta_{i j} J_{A(i), A(j)}
$$

where, the sum is over all pairs of proteins $\langle i, j\rangle$ in the chain and $\delta_{i, j}=1$ if amino acids are nearest neighbour not connected by direct covelant bond. Consider 25 amino acids and assume that energy is measured in units of k_{B} and system is at temperature of 10 . Using your Monte carlo codes (Metropolis based), simulate the different structures of protein. [40]
$=========================^{*}-$ ALLTHE BEST $-*============================$

