BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI COMPUTATIONAL PHYSICS (PHY F313)

Date: 28-12-2022
Max Time: 60 min
Max Marks: 40

IMPORTANT:

Finding numerical answer is good but weightage will be given for correct procedure. Blindly finding the answer has no meaning.

1. [Finding the roots] Consider a particle in a finite square well. The Schrödinger equation that represents the partice position in the well is,

$$
\frac{d^{2} \psi}{d x^{2}}-\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right) \psi=0
$$

On solving the equation we get the solution for even states as, $\alpha \tan \alpha=\beta$ with $\alpha=\sqrt{\frac{2 m E}{\hbar^{2}}}, \beta=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}$.
(a) (5 marks) How the above equation can be solved using the method of Newton Raphson? Write down the algorithm.
(b) (5 marks) The method fails at a specific point. Can you identify the problem in finding the roots of the above equation using Newton Raphson's method? If yes, how can the issue be solved?

2. [Monte Carlo method]

(a) (5 marks) Consider a box divided into two halves separated by a wall. In the beginning, time t_{0}, there are M particles on the right side. By creating a small hole in the wall, we allow one particle to pass through the hole per unit of time. After some time, the system reaches equilibrium. Through a proper algorithm, simulate the problem.
(b) (10 marks) Using the linear congruential method, find the 10 random numbers with $a=6, c=7, M=5$ and initial seed as 2 . Convert the obtained numbers in the range of $0-1$.
3. [Partial Differential Equation, 15 marks] Write the algorithm to find the solution to the Laplace equation, $\nabla^{2} V=0$ (Jacobi relaxation method).
$=========================$ ALL THE BEST $=========================$

BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI COMPUTATIONAL PHYSICS (PHY F313)

Date: 28-12-2022
Max Time: 120 min
Max Marks: 80

1. Finding the roots using Newton Raphson method:
(a) (5 marks) $f(x)=x-\cos (x)$
(b) (5 marks) $f(x)=2^{x}-5+\sin (x)$
(c) (5 marks) Any special observation in finding the roots of the equation $f(x)=x^{3}-x-3$ with initial guess, $x_{0}=0$?

Show your answers through appropriate plots.
2. [10 marks] Use 10-point Gaussian formula to find out the RMS value of current, given by the formula

$$
I_{\mathrm{rms}}=\int_{0}^{0.5}\left[A_{0} e^{-t} \sin (2 \pi t)\right]^{2} d t
$$

Take $A_{0}=5$.
3. [10 marks] Water is drained from a vertical cylindrical tank by opening a valve at the base. The rate with which the water will be drained is given by,

$$
\frac{d x}{d t}=-\alpha \sqrt{x}
$$

where α is a constant depending on the shape of the hole and the cross-sectional area of the tank and drain hole. The depth of the water x is measured in meters, and the time t in minutes. If $\alpha=0.05$, determine how long it takes the tank to drain if the fluid level is initially 7 m . Solve by RK-4 method using a time step of 0.1 minutes. Show the water level as a time function with a suitable plot.
4. [15 marks] Consider a pendulum with mass m at the end of a rigid rod of length l attached to, say, a fixed frictionless pivot which allows the pendulum to move freely under gravity in the vertical plane, as shown in Fig. 01 . in the presence of drag and periodic forces, the equation of motion is,

$$
m l \frac{d^{2} \theta}{d t^{2}}+v \frac{d \theta}{d t}+m g \sin \theta=A \cos (\omega t)
$$

where, A represents the amplitude and ω represents the angular frequency of the motion. The natural frequency of the pendulum is $\omega_{0}=\sqrt{\frac{g}{l}}$. If we introduce the dimensionless quantities as,

$$
\hat{t}=\omega_{0} t, \quad \hat{\omega}=\frac{\omega}{\omega_{0}}, \quad \hat{A}=\frac{A}{m g}, \quad Q=\frac{m g}{\omega_{0} v}
$$

where Q is the quality factor. Solve the equation of motion with the help of Euler's, modified Euler's, and RK-4 methods with 100 grid points. Take the constants of the motion as $Q=2, \hat{\omega}=2 / 3, \hat{A}=0.5, m=1, l=1 \hat{v_{0}}=$ $0, \theta_{0}=0.01$. How will the pendulum move between a time interval $t=0,10 \pi$? Show your results through a labelled plot.
5. [10 marks] Write a computer code to investigate the random walk of a particle. Plot the distance traveled versus the number of steps taken.
6. [20 marks] Consider a protein on a simple square lattice. The energy of the model is defined as,

$$
E=\sum_{\langle i, j\rangle} \delta_{i j} J_{A(i), A(j)}
$$

where, the sum is over all pairs of proteins $\langle i, j\rangle$ in the chain. Whether a hydrogen bond is formed is taken care of by $\delta_{i, j}$; it is 1 if a direct covalent bond does not connect amino acids. Consider 25 amino acids and assume that energy is measured in units of k_{B} and the system is at a temperature of 10 . Using your Monte Carlo codes (Metropolis based), simulate the different protein structures. Show the results through an appropriate plot.

[^0]

Figure 1: For Q4

[^0]: $==========================$ ALL THE BEST $=========================$

