BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 COMPUTATIONAL PHYSICS (PHY F313)

Date: 13-10-2023
Max Time: 90 min
Max Marks: 75

1. [15M] Using the Newton-Raphson method, find out the root of the equation:

$$
f(x)=(x-1)^{3}+0.512 .
$$

Choose the initial guess as $x_{0}=5.0$ and determine the value after 10 iterations [8]. Calculate the error in each iteration [4]. Do you observe anything interesting in the values after each iteration [3]?
2. $[\mathbf{1 5 M}]$ The velocity of the free-falling object is given as,

$$
v(t)=\frac{g}{\alpha}\left(1-e^{-\alpha t}\right) \quad \text { where }, \quad \alpha=\frac{c}{m} .
$$

The velocity is in m / s while time is in $s, g=9.8 \mathrm{~ms}^{-2}$. Find out the distance travelled by the object of mass 80 kg in the first 8 seconds of free fall.
(a) $[7 \mathrm{M}]$ Gaussian quadrature.
(b) $[5 \mathrm{M}]$ Trapezoidal method
(c) $[3 \mathrm{M}]$ Compare your results obtained by both the methods and comment on your results.

Discretize your integral in 10 points. The drag coefficient, c as $10 \mathrm{~kg} / \mathrm{s}$.
3. $[\mathbf{1 5 M}]$ Find out the solution of the given differential equation

$$
\frac{d x}{d t}=(1+2 t) \sqrt{x}
$$

over the interval $t=0$ to 2 with $x(0)=1$ using fourth order Runge Kutta method. Take $h=1.0$.
4. $[\mathbf{1 0 M}]$ Generate N sets of the distinct random number (between 0 and 1) by the congruential (or power series) method. Take the constants as: $a=10, c=100, M=55$ and intial seed as 2 .
5. [20M] A steady state heat balance for a rod can be represented by an equation as,

$$
\frac{d^{2} T}{d x^{2}}-0.15 T=0
$$

Using the shooting method, obtain a solution for the $10-\mathrm{m}$ rod with $T(0)=240$ and $T(10)=150$.

Given:

1. The Gaussian points:

Abscissas $=\{ \pm 0.9739065285, \pm 0.8650633667, \pm 0.6794095683, \pm 0.4333953941, \pm 0.148874339\}$
Weights $=\{0.0666713443,0.1494513492,0.2190863625,0.2692667193,0.2955242247\}$

