Physics Department; BITS - Pilani, Pilani
 Mid Term Exam (CB) ; $1^{\text {st }}$ Sem' 17-18
 Theory of Relativity (PHY F315)

Max. Time: 1.5 hrs
Max. Marks : 60
Note : Wherever applicable, the frame $-S^{\prime}$ can be considered moving with speed v relative to S along $x-x^{\prime}$ axis.
Q1. Determine the following scalar quantities. The result should be expressed in terms of speed of light c, rest mass m_{0}, proper charge density ρ_{0} etc. wherever applicable. $U^{\mu}, P^{\mu}, a^{\mu}$ and j^{μ} are four velocity, four momentum, four acceleration and four current, respectively. (a) $P^{\mu} U_{\mu}$ (b) $a^{\mu} U_{\mu}$ (c) $j^{\mu} j_{\mu}$. $\quad[3 \times 3]$

Q2. For the following statements, write TRUE/FALSE with self convincing justification (in one/two sentences).
(a) In any relativistic collision in a force free environment, total rest mass of the particles always conserved.
(b) The interval " $c^{2}(\Delta t)^{2}+(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$ " is invariant under Galilean transformation.
(c) On a Minkowski spacetime diagram, the event B lies on the light cone of an event A. These two events are separated by timelike interval.
(d) The timelike interval can be made spacelike by suitable Lorentz transformation.
(e) The quantity, $\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)$ is invariant under Lorentz transformation (clue : $F^{\mu \nu} F_{\mu \nu}$ is invariant). [5 $\left.\times 2\right]$

Q3. Answer the following question very briefly. (3/4 steps seem to be sufficient).
(a) Justify, whether the operator $\frac{\partial}{\partial x_{\mu}}$ is covariant or contravariant.
(b) A charge particle (charge q and rest mass m_{0}) moving with instantaneous velocity \vec{u} in an electromagnetic fields, $\vec{E}=0, \vec{B} \neq 0$. Determine the 0-component of the four force f^{μ} of the particle.
(c) Write all elements of the matrix formed by the field strength tensor $F^{\mu \nu}$.
(d) Using Maxwell's equations, $\partial_{\alpha} F^{\alpha \beta}=\mu_{0} j^{\beta}$, determine $\partial_{\beta} j^{\beta}$. (Clue : $F^{\alpha \beta}$ is anti-symmetric. $) \quad[4 \times 4]$

Q4. The rapidity variable, η of a particle (energy E and momentum \vec{p} in frame S) is defined as, $\eta=\ln \left(\frac{E+p_{x} c}{E-p_{x} c}\right)$. In S^{\prime}, the rapidity variable η^{\prime} can be written as, $\eta^{\prime}=\eta+\eta(v)$. Find $\eta(v)$. [8]

Q5. Consider a linear collision of two identical particles (rest mass, m_{0}) approaching each other with energy E each. Find therelative energy E^{\prime} (relativistically) of second particle wrt first. Note, E^{\prime} should be expressed in terms of E and m_{0}. [Clue : The quantity, $s=c^{2}\left(p_{1}+p_{2}\right)^{2}$ is same for both cases.] [8]

Q6. Consider a light source fixed at origin in frame S emitting light of frequency ν with propagation wave vector $\vec{k}=\left(k_{x}, k_{y}, k_{z}\right)=|\vec{k}|(\cos \theta, \sin \theta, 0)$. Where, θ is the angle between x -axis and the vector \vec{k}. Assume ν^{\prime} and θ^{\prime} are the corresponding frequency and angle in frame S^{\prime}. Determine ν^{\prime} in terms of ν and θ. [Note, the electromagnetic four wave vector, $k^{\mu}=\left(k^{0}, k_{x}, k_{y}, k_{z}\right)$, where $\left.k^{0}=|\vec{k}|=\frac{2 \pi \nu}{c}\right] \quad[9]$

