Physics Department; BITS - Pilani, Pilani Mid Term Exam (CB) ; 1st Sem' 17 - 18 Theory of Relativity (PHY F315)

Max.	Time: 1.5 hrs				Max.	Marks : 60	
Note :	Wherever applicable,	the frame- S'	can be considered	moving with speed v	relative to	$S \ along \ x - x' \ axis.$	

Q1. Determine the following scalar quantities. The result should be expressed in terms of speed of light c, rest mass m_0 , proper charge density ρ_0 etc. wherever applicable. $U^{\mu}, P^{\mu}, a^{\mu}$ and j^{μ} are four velocity, four momentum, four acceleration and four current, respectively. (a) $P^{\mu}U_{\mu}$ (b) $a^{\mu}U_{\mu}$ (c) $j^{\mu}j_{\mu}$. [3 × 3]

Q2. For the following statements, write TRUE/FALSE with self convincing justification (in one/two sentences).

(a) In any relativistic collision in a force free environment, total rest mass of the particles always conserved.

(b) The interval " $c^2(\Delta t)^2 + (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2$ " is invariant under Galilean transformation.

(c) On a Minkowski spacetime diagram, the event B lies on the light cone of an event A. These two events are separated by *timelike* interval.

(d) The *timelike* interval can be made *spacelike* by suitable Lorentz transformation.

(e) The quantity, $(|\vec{E}|^2 + |\vec{B}|^2)$ is invariant under Lorentz transformation (*clue* : $F^{\mu\nu}F_{\mu\nu}$ is invariant). [5 × 2]

Q3. Answer the following question very briefly. (3/4 steps seem to be sufficient).

(a) Justify, whether the operator $\frac{\partial}{\partial x_{\mu}}$ is covariant or contravariant.

(b) A charge particle (charge q and rest mass m_0) moving with instantaneous velocity \vec{u} in an electromagnetic fields,

 $\vec{E} = 0, \vec{B} \neq 0$. Determine the 0-component of the four force f^{μ} of the particle.

(c) Write all elements of the matrix formed by the field strength tensor $F^{\mu\nu}$.

(d) Using Maxwell's equations, $\partial_{\alpha} F^{\alpha\beta} = \mu_0 j^{\beta}$, determine $\partial_{\beta} j^{\beta}$. (*Clue* : $F^{\alpha\beta}$ is anti-symmetric.) [4 × 4]

Q4. The rapidity variable, η of a particle (energy E and momentum \vec{p} in frame S) is defined as, $\eta = ln \left(\frac{E + p_x c}{E - p_x c}\right)$. In S', the rapidity variable η' can be written as, $\eta' = \eta + \eta(v)$. Find $\eta(v)$. [8]

Q5. Consider a linear collision of two identical particles (rest mass, m_0) approaching each other with energy E each. Find therelative energy E' (relativistically) of second particle wrt first. Note, E' should be expressed in terms of E and m_0 . [*Clue* : The quantity, $s = c^2(p_1 + p_2)^2$ is same for both cases.] [8]

Q6. Consider a light source fixed at origin in frame S emitting light of frequency ν with propagation wave vector $\vec{k} = (k_x, k_y, k_z) = |\vec{k}|(\cos\theta, \sin\theta, 0)$. Where, θ is the angle between x-axis and the vector \vec{k} . Assume ν' and θ' are the corresponding frequency and angle in frame S'. Determine ν' in terms of ν and θ . [Note, the electromagnetic four wave vector, $k^{\mu} = (k^0, k_x, k_y, k_z)$, where $k^0 = |\vec{k}| = \frac{2\pi\nu}{c}$] [9]