Birla Institute of Technology \& Science, Pilani
 K. K. Birla Goa Campus
 Theory of Relativity (PHY F315) SEM I 2022-23

30 December 2022
Time: 3 Hrs.

Comprehensive Examination (Closed book)
Max. Marks: 80

1. Using the Lorentz transformation equations and the fact that the spacetime interval $\Delta s^{2} \equiv c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta^{2} z$ is a Lorentz invariant, derive the formulas for length contraction and time dilation.
2. At the LHC (Large Hadron Collider), two photons are detected with 4-momenta $P_{1}=E_{1} / c(1,1,0,0)$ and $P_{2}=$ $E_{2} / c(1, \cos \theta, \sin \theta, 0)$, respectively. Assuming that the photon pair resulted from the decay of a new particle ϕ such that $\phi \longrightarrow \gamma \gamma$, what is the mass of the new particle?
3. The magnetic field inside a long solenoid carrying a steady current I and having n turns per unit length is given by $\overrightarrow{\boldsymbol{B}}=\mu_{0} n I \hat{\boldsymbol{x}}$, where $\hat{\boldsymbol{x}}$ is a unit vector parallel to the axis of the solenoid. Use this expression to find how the x-component of the magnetic field transforms under the standard Lorentz transformation.
4. Show that $\sum_{\mu} D^{\mu \mu}$ and $\sum_{\mu} D_{\mu \mu}$ are not invariant under Lorentz transformations, but that $\sum_{\mu} \mathrm{D}_{\mu}{ }^{\mu}$ is invariant. (Take \mathbf{D} to be a tensor defined by its components $D^{\mu \nu}$.) Hint: For the case of $D^{\mu \mu}$ and $D_{\mu \mu}$, prove by taking specific examples.
5. Prove that the Kronecker delta, $\delta^{\mu}{ }_{v}$, is a tensor, under a general coordinate transformation.
6. Derive the relation between the Christoffel symbols $\Gamma_{\mu \nu}^{\lambda}$ and the metric tensor $g_{\mu \nu}$ from the following conditions: (i) $\nabla_{\lambda} g_{\mu \nu}=0$, where ∇_{λ} is the covariant derivative, and (ii) $\Gamma_{\mu \nu}^{\lambda}=\Gamma_{v \mu}^{\lambda}$. (The result is the so-called "fundamental theorem" in Riemannian geometry.)
Hint: 1. If

$$
\nabla_{\lambda} T_{\mu \nu}=\frac{\partial T_{\mu \nu}}{\partial x^{\lambda}}-\sum_{\rho} \Gamma_{\lambda \mu}^{\rho} T_{\rho \nu}-\sum_{\rho} \Gamma_{\lambda \nu}^{\rho} T_{\mu \rho},
$$

what are the other two independent equations?
2. $\sum_{\nu} g^{\mu \nu} g_{v \alpha}=\delta^{\mu}{ }_{\alpha}$.
7. On the surface of a unit two-dimensional sphere, $\mathrm{ds}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$.
(a) Find all the non-zero Christoffel symbols (connection coefficients).
(b) A vector \mathbf{A} is equal to $\hat{\boldsymbol{\theta}}$ at $\theta=\theta_{0}, \phi=0$. It is then parallel transported around the circle $\theta=\theta_{0}$. What is the equation of parallel transport for \mathbf{A} along the ϕ coordinate line ($\theta=$ constant $)$?
(c) Solve the equation of parallel transport, from the previous section, for the components A_{θ} and A_{ϕ}.
(d) Use the previous result to show that \mathbf{A} after it is parallel transported around the circle $\theta=\theta_{0}$ (i. e., at $\phi=2 \pi$), is not equal to \mathbf{A} at $\phi=0$. What is the magnitude of \mathbf{A} at $\phi=2 \pi ?(\mathbf{5 + 5 + 5} \mathbf{5}=\mathbf{2 0})$

Note:

$$
\begin{gathered}
T_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}^{\prime \mu_{1} \mu_{2} \ldots \mu_{m}}=\sum_{v_{1}, v_{2}, \ldots, v_{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}} \frac{\partial x^{\prime \mu_{1}}}{\partial x^{\nu_{1}}} \frac{\partial x^{\prime \mu_{2}}}{\partial x^{v_{2}}} \cdots \frac{\partial x^{\mu_{m}}}{\partial x^{v_{m}}} \frac{\partial x^{\beta_{1}}}{\partial x^{\alpha_{1}}} \frac{\partial x^{\beta_{2}}}{\partial x^{\prime \alpha_{2}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial x^{\prime \alpha_{n}}} T_{\beta_{1} \beta_{2} \ldots \beta_{n}}^{\nu_{1} v_{2} \ldots v_{m}} . \\
\Gamma_{j k}^{i}=\frac{1}{2} \sum_{l} g^{i l}\left(\frac{\partial g_{l k}}{\partial x^{j}}+\frac{\partial g_{j l}}{\partial x^{k}}-\frac{\partial g_{j k}}{\partial x^{l}}\right) ; \text { Parallel Transport: } \frac{\mathrm{d} v^{i}}{\mathrm{~d} u}=-\sum_{j, k} \Gamma_{j k}^{i}{ }_{j}^{j} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} u} .
\end{gathered}
$$

