Birla Institute of Technology & Science, Pilani K. K. Birla Goa Campus Theory of Relativity (PHY F315) SEM I 2022-23

30 December 2022	Comprehensive Examination (Closed book)	
Time: 3 Hrs.	Max. Marks: 80	Weight 40%

- 1. Using the Lorentz transformation equations and the fact that the spacetime interval $\Delta s^2 \equiv c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta^2 z$ is a Lorentz invariant, derive the formulas for length contraction and time dilation. (10)
- 2. At the LHC (Large Hadron Collider), two photons are detected with 4-momenta $P_1 = E_1/c(1, 1, 0, 0)$ and $P_2 = E_2/c(1, \cos \theta, \sin \theta, 0)$, respectively. Assuming that the photon pair resulted from the decay of a new particle ϕ such that $\phi \longrightarrow \gamma\gamma$, what is the mass of the new particle? (10)
- 3. The magnetic field inside a long solenoid carrying a steady current *I* and having *n* turns per unit length is given by $\vec{B} = \mu_0 n I \hat{x}$, where \hat{x} is a unit vector parallel to the axis of the solenoid. Use this expression to find how the *x*-component of the magnetic field transforms under the standard Lorentz transformation. (10)
- 4. Show that $\sum_{\mu} D^{\mu\mu}$ and $\sum_{\mu} D_{\mu\mu}$ are not invariant under Lorentz transformations, but that $\sum_{\mu} D_{\mu}^{\mu}$ is invariant. (Take **D** to be a tensor defined by its components $D^{\mu\nu}$.) Hint: For the case of $D^{\mu\mu}$ and $D_{\mu\mu}$, prove by taking specific examples. (10)
- 5. Prove that the Kronecker delta, $\delta^{\mu}{}_{\nu}$, is a tensor, under a general coordinate transformation. (10)

Note:

6. Derive the relation between the Christoffel symbols $\Gamma^{\lambda}_{\mu\nu}$ and the metric tensor $g_{\mu\nu}$ from the following conditions: (i) $\nabla_{\lambda}g_{\mu\nu} = 0$, where ∇_{λ} is the covariant derivative, and (ii) $\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\nu\mu}$. (The result is the so-called "fundamental theorem" in Riemannian geometry.)

Hint: 1. If

$$\nabla_{\lambda}T_{\mu\nu} = \frac{\partial T_{\mu\nu}}{\partial x^{\lambda}} - \sum_{\rho}\Gamma^{\rho}_{\lambda\mu}T_{\rho\nu} - \sum_{\rho}\Gamma^{\rho}_{\lambda\nu}T_{\mu\rho},$$

what are the other two independent equations?

2.
$$\sum_{\nu} g^{\mu\nu} g_{\nu\alpha} = \delta^{\mu}{}_{\alpha}.$$
 (10)

- 7. On the surface of a unit two-dimensional sphere, $ds^2 = d\theta^2 + \sin^2 \theta \, d\phi^2$.
 - (a) Find all the non-zero Christoffel symbols (connection coefficients).
 - (b) A vector A is equal to θ̂ at θ = θ₀, φ = 0. It is then parallel transported around the circle θ = θ₀. What is the equation of parallel transport for A along the φ coordinate line (θ=constant)?
 - (c) Solve the equation of parallel transport, from the previous section, for the components A_{θ} and A_{ϕ} .
 - (d) Use the previous result to show that **A** after it is parallel transported around the circle $\theta = \theta_0$ (i. e., at $\phi = 2\pi$), is not equal to **A** at $\phi = 0$. What is the magnitude of **A** at $\phi = 2\pi$? (5+5+5+5=20)

$$T_{\alpha_{1}\alpha_{2}...\alpha_{n}}^{'\mu_{1}\mu_{2}...\mu_{m}} = \sum_{\nu_{1},\nu_{2},...,\nu_{m},\beta_{1},\beta_{2},...,\beta_{n}} \frac{\partial x^{\prime\mu_{1}}}{\partial x^{\nu_{1}}} \frac{\partial x^{\prime\mu_{2}}}{\partial x^{\nu_{2}}} \dots \frac{\partial x^{\prime\mu_{m}}}{\partial x^{\nu_{m}}} \frac{\partial x^{\beta_{1}}}{\partial x^{\prime\alpha_{1}}} \frac{\partial x^{\beta_{2}}}{\partial x^{\prime\alpha_{2}}} \dots \frac{\partial x^{\beta_{n}}}{\partial x^{\prime\alpha_{n}}} T_{\beta_{1}\beta_{2}...\beta_{n}}^{\nu_{1}\nu_{2}...\nu_{m}}.$$

$$\Gamma_{jk}^{i} = \frac{1}{2} \sum_{l} g^{il} \left(\frac{\partial g_{lk}}{\partial x^{j}} + \frac{\partial g_{jl}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right); \text{ Parallel Transport: } \frac{\mathrm{d}v^{i}}{\mathrm{d}u} = -\sum_{j,k} \Gamma_{jk}^{i} v^{j} \frac{\mathrm{d}x^{k}}{\mathrm{d}u}.$$