Birla Institute of Technology \& Science, Pilani
 K. K. Birla Goa Campus
 First Semester 2022-2023

4 November 2022 Theory of Relativity (PHY F315) Mid-Semester Examination (Closed book) Time: 90 min Max. Marks: 60
Weightage 30\%

1. Prove that the quantity

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-c^{2} t^{2} \tag{5}
\end{equation*}
$$

is a Lorentz invariant.
2. Show that two events which are simultaneous in one frame need not be simultaneous in another frame.
3. In an inertial frame S, an event is observed to take place at a point A on the x-axis and 10^{-6} s later another event takes place at a point $B, 900 \mathrm{~m}$ from A. Find the magnitude and direction of the velocity of S^{\prime} with respect to S in which these two events appear simultaneous.
4. Show that a photon moving at speed c (the speed of light in vacuum) will have the same speed in all frames of reference.
5. Find the speed of a proton whose kinetic energy is equal to its rest mass energy. What about an electron?
6. A body at rest, explodes into two bodies of rest mass 1 kg each that move apart at a speed of $0.6 c$ with respect to the original body. What is the rest mass of the original body?
7. (a) The rapidity ϕ is defined as $\tanh \phi \equiv$ $v / c \equiv \beta$. If $\cosh \phi=a \gamma$ and $\sinh \phi=$ $b \gamma$, find a and b.
(b) Use the previous result to rewrite the Lorentz transformation equations in terms of the rapidity.
(c) Let observer O move in the positive x^{\prime} direction of observer O^{\prime} with speed β. Observer O^{\prime}, in turn, moves in the positive $x^{\prime \prime}$-direction of observer $O^{\prime \prime}$ with speed β^{\prime}. Find a relation between the rapidity $\phi^{\prime \prime}$ of $O^{\prime \prime}$ relative to O and the rapidity ϕ^{\prime} of $O^{\prime \prime}$ relative to O^{\prime}
and ϕ the relative rapidity of O^{\prime} relative to O. Note: $\tanh (A+B)=$ $\frac{\tanh A+\tanh B}{1+\tanh A \tanh B}$
$(5+5+5=15)$
8. Spacetime diagrams: Given two inertial frames, S and S^{\prime}, in standard configuration, it is instructive to plot the $c t^{\prime}$ - and x^{\prime}-axes of frame S^{\prime} on the spacetime diagram for frame S . The x^{\prime}-axis of frame S^{\prime} is defined by the set of events for which $c t^{\prime}=0$, and the $c t^{\prime}-$ axis is defined by the set of events for which $x^{\prime}=0$. The coordinates of these events in S are related to their coordinates in S^{\prime} by the usual Lorentz transformations:

$$
\begin{aligned}
& c t^{\prime}=\gamma(V)(c t-V x / c), \\
& x^{\prime}=\gamma(V)(x-V t) .
\end{aligned}
$$

Setting $c t^{\prime}=0$ in the first of these equations gives $0=\gamma(V)(c t-V x / c)$. This shows that in the spacetime diagram for frame S , the x^{\prime}-axis of frame S^{\prime} is represented by the line $c t=(V / c) x$, a straight line through the origin with gradient V / c. Similarly, setting $x^{\prime}=0$ in the second transformation equation gives $0=\gamma(V)(x-V t)$, showing that the $c t^{\prime}$-axis of frame S^{\prime} is represented by the line $c t=(c / V) x$, a straight line through the origin with gradient c / V in the spacetime diagram of S. These lines are shown in the below figure.

(a) Certain set of events, called events 0 , $1,2,3$ occur in spacetime, as shown in the below figure. Order them chronologically according to both S and S^{\prime}.

(b) Although observers might disagree about the order of some events, they will not disagree about the order of any two events that might be linked by a light signal or any other signal which travels at less than speed of light. Such events are said to be causally related: cause precedes effect. In the adjacent figure, which events are causally related?
(c) For a set of two causally disconnected events in the adjacent figure, draw the spacetime diagram for a frame $S^{\prime \prime}$ in the frame S , in which the chronological order of these two events is reversed.
$(5+5+5=15)$

[^0]
[^0]: ************************** That's all Folks!

