16 May 2023Theory of Relativity (PHY F315)Comprehensive Examination (Closed book)Duration 3 Hrs.Max. Marks: 80Weight 40%

- 1. A rocket moves with a velocity v = 0.8c. As soon as it reaches a distance $d = 6.66 \times 10^8$ km from Earth, a radio signal is emitted from the Earth station to the rocket. How much time does the signal need to reach the rocket
 - (a) according to a clock on the Earth station,
 - (b) according to a clock on the rocket? (5+5=10)
- 2. Two electrons approach each other, each with energy γmc^2 in the laboratory frame. Compute the energy of one electron as seen in the rest frame of the other. Express your answer in terms of γ and mc^2 . (10)
- 3. Consider the reaction $a + b \rightarrow c + d$. The rest masses of the particles a, b, c and d are respectively m_a, m_b, m_c and m_d . Find the threshold kinetic energy of particle a to create particle c at an angle of 90° (with respect to the incident direction) in the lab, in which the particle b is at rest before collision. Express your answer in terms of the rest masses of the particles. (10)
- 4. The inertial system S' moves relative to the inertial system S with a speed v along the common x x' axes in the positive direction. At time t = t' = 0 the two systems coincide. A point charge q is located at the origin of S'.
 - (a) Determine the four-potentials A'^{μ} and A^{μ} in S' and S, respectively.
 - (b) Using A^{μ} , calculate the electromagnetic fields **E** and **B** of the point charge in *S*.
 - (c) What is the vector equation connecting E, B and v? (6+6+3=15)
- 5. Consider a contravariant *unit* vector on the surface of a unit sphere with polar coordinates θ, ϕ ($\theta = 0$ being the north pole and $\theta = \pi/2$ the equator). It is parallely transported along the equator from $\phi = 0$ to

 $\phi = \pi/2$, then similarly transported along the meridian ($\phi = \pi/2$) from $\theta = \pi/2$ to $\theta = \pi/3$ and then along the latitude ($\theta = \pi/3$) from $\phi = \pi/2$ to $\phi = 0$. Finally, it is transported similarly along the meridian back to the starting point $\theta = \pi/2, \phi = 0$ (see figure below). Find the angle between the initial and final vectors. Note: If $x^1 \equiv \theta$ and $x^2 \equiv \phi$, $g_{11} = 1, g_{22} = \sin^2 \theta$ and the non-zero connection coefficients/Christoffel symbols are $\Gamma_{22}^1 = -\sin \theta \cos \theta$ and $\Gamma_{12}^2 = \cot \theta$. Note: The scalar product of two vectors **A** and **B** is $\mathbf{A} \cdot \mathbf{B} \equiv \sum_i A^i B_i = \sum_{i,j} g_{ij} A^i B^j$. (15)

6. Consider a torus in a two-dimensional Euclidean space described by the spherical coordinate system (θ, ϕ) . The line element of the torus is then given by

$$\mathrm{d}s^2 = (b + a\sin\phi)^2 \,\mathrm{d}\theta^2 + a^2 \,\mathrm{d}\phi^2,$$

where *b* and *a* denote the torus radius and the radius of its section, respectively.

- (a) Find all the components of the metric tensor g_{ij} and its duel, g^{ij} .
- (b) Compute all the non-zero Christoffel symbols/connection coefficients.
- (c) Find the only independent non-zero component of the (Riemann) curvature tensor, proving that the space is curved.
 (4+8+8=20)