Birla Institute of Technology \& Science Pilani, K. K. Birla Goa Campus Second Semester 2022-2023

$\begin{array}{lll}16 \text { May } 2023 \text { Theory of Relativity (PHY F315) Comprehensive Examination (Closed book) } \\ \text { Duration } 3 \text { Hrs. } & \text { Max. Marks: } 80 & \text { Weight 40\% }\end{array}$

1. A rocket moves with a velocity $v=0.8 c$. As soon as it reaches a distance $d=6.66 \times$ $10^{8} \mathrm{~km}$ from Earth, a radio signal is emitted from the Earth station to the rocket. How much time does the signal need to reach the rocket
(a) according to a clock on the Earth station,
(b) according to a clock on the rocket?
($5+5=10$)
2. Two electrons approach each other, each with energy $\gamma m c^{2}$ in the laboratory frame. Compute the energy of one electron as seen in the rest frame of the other. Express your answer in terms of γ and $m c^{2}$.
3. Consider the reaction $a+b \rightarrow c+d$. The rest masses of the particles a, b, c and d are respectively m_{a}, m_{b}, m_{c} and m_{d}. Find the threshold kinetic energy of particle a to create particle c at an angle of 90° (with respect to the incident direction) in the lab, in which the particle b is at rest before collision. Express your answer in terms of the rest masses of the particles.
4. The inertial system S^{\prime} moves relative to the inertial system S with a speed v along the common $x-x^{\prime}$ axes in the positive direction. At time $t=t^{\prime}=0$ the two systems coincide. A point charge q is located at the origin of S^{\prime}.
(a) Determine the four-potentials A^{μ} and A^{μ} in S^{\prime} and S, respectively.
(b) Using A^{μ}, calculate the electromagnetic fields \mathbf{E} and \mathbf{B} of the point charge in S.
(c) What is the vector equation connecting \mathbf{E}, \mathbf{B} and \mathbf{v} ?
$(6+6+3=15)$
5. Consider a contravariant unit vector on the surface of a unit sphere with polar coordinates $\theta, \phi(\theta=0$ being the north pole and $\theta=\pi / 2$ the equator). It is parallely transported along the equator from $\phi=0$ to
$\phi=\pi / 2$, then similarly transported along the meridian ($\phi=\pi / 2$) from $\theta=\pi / 2$ to $\theta=\pi / 3$ and then along the latitude $(\theta=\pi / 3)$ from $\phi=\pi / 2$ to $\phi=0$. Finally, it is transported similarly along the meridian back to the starting point $\theta=\pi / 2, \phi=0$ (see figure below). Find the angle between the initial and final vectors. Note: If $x^{1} \equiv \theta$ and $x^{2} \equiv \phi$, $g_{11}=1, g_{22}=\sin ^{2} \theta$ and the non-zero connection coefficients/Christoffel symbols are $\Gamma_{22}^{1}=-\sin \theta \cos \theta$ and $\Gamma_{12}^{2}=\cot \theta$. Note: The scalar product of two vectors \mathbf{A} and \mathbf{B} is $\mathbf{A} \cdot \mathbf{B} \equiv \sum_{i} A^{i} B_{i}=\sum_{i, j} g_{i j} A^{i} B^{j}$.

6. Consider a torus in a two-dimensional Euclidean space described by the spherical coordinate system (θ, ϕ). The line element of the torus is then given by

$$
\mathrm{d} s^{2}=(b+a \sin \phi)^{2} \mathrm{~d} \theta^{2}+a^{2} \mathrm{~d} \phi^{2},
$$

where b and a denote the torus radius and the radius of its section, respectively.
(a) Find all the components of the metric tensor $g_{i j}$ and its duel, $g^{i j}$.
(b) Compute all the non-zero Christoffel symbols/connection coefficients.
(c) Find the only independent non-zero component of the (Riemann) curvature tensor, proving that the space is curved.
$(4+8+8=20)$

