Birla Institute of Technology & Science, Pilani K. K. Birla Goa Campus Second Semester 2022-2023

16 March 2023	Theory of Relativity (PHY F315)	Mid-Semester Examination	(Closed book)
Duration 90 min	Max. Ma	′ks: 60	Weight 30%

- A Deer is running at a speed (3/4)c. A hunter, pursuing it in a car which can travel at (1/2)c, shoots a bullet from his car. The muzzle velocity of the bullet (relative to the gun) is (1/3)c. Does the hunter manage to hit the deer (a) according to Galileo, (b) according to Einstein? (5+5=10)
- 2. Consider a collection of particles, all moving in the x direction, with energies E_1, E_2, E_3, \ldots and momenta p_1, p_2, p_3, \ldots Find the velocity of the center of momentum frame, in which the total momentum is zero. (10)
- 3. The four-dimensional gradient operator $[\partial/\partial x^{\mu}]$ functions like a covariant 4-vector. In fact, it is often written as $[\partial_{\mu}]$, for short. The corresponding contravariant gradient would be $[\partial^{\mu} \equiv \partial/\partial x_{\mu}]$. Prove that $[\partial^{\mu}\phi]$ is a (contravariant) 4-vector, if ϕ is a scalar function, by working out its transformation law, using the chain rule. (10)

- 4. Inertial system S' moves at constant velocity $\mathbf{v} = v (\cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}})$ with respect to frame S. Their axes are parallel to one another, and their origins coincide at t = t' = 0, as usual. Find the Lorentz transformation matrix L. Hint: What is the transformation rule for coordinates, which are related via a rotation about the *z*-axis? (10)
- 5. A particle of rest mass m_1 and velocity \vec{v}_1 collides with a stationary particle of rest mass m_2 and is absorbed by it. Find the rest mass m and the velocity \vec{v} of the resultant compound system in terms of m_1, m_2 and $v_1(=|\vec{v}_1|)$. (10)
- 6. If two frames have 4-velocities, U_1 and U_2 , prove that

$$U_1\cdot U_2=\gamma,$$

the Lorentz transformation factor, between the two frames. (10)