Birla Institute of Technology \& Science, Pilani
 K. K. Birla Goa Campus
 Second Semester 2022-2023

16 March 2023 Theory of Relativity (PHY F315) Mid-Semester Examination (Closed book) Duration 90 min

1. A Deer is running at a speed (3/4)c. A hunter, pursuing it in a car which can travel at $(1 / 2) \mathrm{c}$, shoots a bullet from his car. The muzzle velocity of the bullet (relative to the gun) is $(1 / 3) \mathrm{c}$. Does the hunter manage to hit the deer (a) according to Galileo, (b) according to Einstein?
$(5+5=10)$
2. Consider a collection of particles, all moving in the x direction, with energies $E_{1}, E_{2}, E_{3}, \ldots$ and momenta $p_{1}, p_{2}, p_{3}, \ldots$ Find the velocity of the center of momentum frame, in which the total momentum is zero. (10)
3. The four-dimensional gradient operator $\left[\partial / \partial x^{\mu}\right]$ functions like a covariant 4 -vector. In fact, it is often written as $\left[\partial_{\mu}\right]$, for short. The corresponding contravariant gradient would be $\left[\partial^{\mu} \equiv \partial / \partial x_{\mu}\right]$. Prove that $\left[\partial^{\mu} \phi\right]$ is a (contravariant) 4 -vector, if ϕ is a scalar function, by working out its transformation law, using the chain rule.
(10)
4. Inertial system S^{\prime} moves at constant velocity $\mathbf{v}=v(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}})$ with respect to frame S. Their axes are parallel to one another, and their origins coincide at $t=t^{\prime}=0$, as usual. Find the Lorentz transformation matrix L. Hint: What is the transformation rule for coordinates, which are related via a rotation about the z-axis?
5. A particle of rest mass m_{1} and velocity $\overrightarrow{\boldsymbol{v}_{1}}$ collides with a stationary particle of rest mass m_{2} and is absorbed by it. Find the rest mass m and the velocity \vec{v} of the resultant compound system in terms of m_{1}, m_{2} and $v_{1}\left(=\left|\overrightarrow{\boldsymbol{v}_{1}}\right|\right)$.
6. If two frames have 4-velocities, U_{1} and U_{2}, prove that

$$
U_{1} \cdot U_{2}=\gamma,
$$

the Lorentz transformation factor, between the two frames.
(10)

