PHYSICS DEPARTMENT; BITS-PILANI, PILANI

2ND SEMESTER 2021 - 2022

NUCLEAR & PARTICLE PHYSICS (PHY F343); Mid-Term Examination (Closed Book) Date & Time - 12/03/2022; 9:00 AM - 10:30 AM; Max. Marks - 60

Please attempt all parts of a question sequentially. Use the data appended below, if required.

- 1. Answer the following questions briefly and precisely.
 - (a) If Li_3^6 with spin-parity $J^p = 0^+$ is one of the members of isospin multiplet I = 1 family, write down the other members of this multiplet having the same spin-parity.
 - (b) You are perhaps aware that the elements Co_{27}^{65} and Ga_{31}^{65} are unstable against β decay. Write down the appropriate β^{\pm} decay chains through which these elements transform into a stable element.
 - (c) From the perspective of Q-values, prove/disprove that Cu_{29}^{64} is a β^{\pm} emitter. Take neutrino mass to be zero. [3 + 3 + 6]
- Answer the following questions supplemented with a few mathematical steps.
 - (a) The neutron and proton separation energies of O_8^{16} nucleus are denoted by $S_n \& S_p$, respectively. Using SEMF, determine the numerical value (in MeV) of $(S_n - S_p)$.
 - (b) Using SEMF determine the Q value (in MeV) for the β^+ decay of C_6^{11} nucleus. Take neutrino mass $m_{\nu} = 0$.
 - (c) In the context of α -decay through quantum tunneling (Gamow's theory), determine the maximum barrier height V_m (in MeV) and barrier width b (in fm) encountered by the α particle for Fr_{87}^{212} nucleus. Take $Q_{\alpha} \simeq T_{\alpha} =$ 6.5 MeV.

$$[$$
 3 $imes$ 8 $]$

- 3. Assume a hypothetical n-n bound state of spin-parity, $J^P = 2^+$ with the effective potential, $V_{eff}(r) = -V_0 + \frac{\hbar^2 l(l+1)}{2\mu r^2}$. Here, $V_0 = 38$ MeV is the minimum depth of the potential well to make n-n barely bound.
 - (a) For this hypothetical state, estimate the numerical value of $V_{eff}(r)$ (in MeV) at r = 2 fm.
 - (b) For the operator $S_{12} = [3(\vec{\sigma}_1.\hat{r})(\vec{\sigma}_2.\hat{r}) \vec{\sigma}_1.\vec{\sigma}_2]$, obtain the expectation value $\langle S_{12} \rangle$ for the above hypothetical state. Here, $\sigma_{1,2}$ are the Pauli matrices of two neutrons, and \hat{r} is the unit vector along their separation vector. [5+5]
- 4. Consider the n-p scattering with energy E and wave vector $k = \sqrt{\frac{2\mu E}{\hbar^2}}$. The scattering amplitude is given as, $f(\theta) = \frac{1}{k} \sum_{l} (2l+1) e^{i\delta_{l}} \sin \delta_{l} P_{l}(\cos \theta).$
 - (a) Using the above expression of $f(\theta)$, obtain the *total* n-p scattering cross section σ (express as sum over all partial waves l). Obtain the relation between σ and the imaginary part of the forward scattering amplitude $f(\theta = 0)$, i.e., relate σ with Im f(0).
 - (b) Now consider $E \to 0$ limit with the phase shift $\sin^2 \delta_0 = E/(E + |E_B|)$. Suppose you (wrongly) believe that the measured value of n-p cross section of magnitude 21 barn results from the triplet state scattering only. What do you then conclude about the numerical value of deuteron's binding energy $|E_B|$? Find the corresponding scattering length (in fm). (1 barn = 100 fm²). [(5+2)+(5+2)]

Symbols/Formulae/Data :

You can use : $\hbar c \simeq 200$ MeV-fm, $e^2/(4\pi\epsilon_0\hbar c) = 1/137$; $m_n c^2 = 939.565$ MeV, $m_p c^2 = 938.272$ MeV, $m_e c^2 = 0.51$ MeV; $\mu_p = 2.793 \ \mu_N$; $\mu_n = -1.913 \ \mu_N$; radius parameter $r_0 = 1.2$ fm.

Semi-empirical formula for binding energy : $B = a_v A - a_s A^{2/3} - a_c \frac{z^2}{A^{1/3}} - a_a \frac{(A-2z)^2}{A} + \delta a_p A^{-3/4}$. The values of various co-efficients (in MeV) : $a_v = 16$, $a_s = 17$, $a_c = 0.69$, $a_a = 25$, $a_p = 35$.

Atomic masses of few elements : $M(64, 27) = 63.9358 \ u, M(64, 28) = 63.9280 \ u, M(64, 29) = 63.9298 \ u, M(64, 30) =$ $63.9291 \ u, 1 \ u \equiv 931.5 \ \mathsf{MeV}$.

Algebra involving Pauli matrices : $(\vec{\sigma}.\vec{a})(\vec{\sigma}.\vec{a}) = (\vec{a}.\vec{b})I + i(\vec{a}\times\vec{b}).\vec{\sigma}$

Standard/lecture class symbols have been used. For example, total angular momentum (J), Spin (S), Isospin (I), proton spin (s_p) , neutron spin (s_n) , Pauli matrices (σ) , etc.