NUCLEAR \& PARTICLE PHYSICS (PHY F343); Mid-Term Examination (Closed Book)
Date \& Time - 12/03/2022; 9:00 AM - 10:30 AM; Max. Marks - 60

Please attempt all parts of a question sequentially. Use the data appended below, if required.

1. Answer the following questions briefly and precisely.
(a) If $L i_{3}^{6}$ with spin-parity $J^{p}=0^{+}$is one of the members of isospin multiplet $I=1$ family, write down the other members of this multiplet having the same spin-parity.
(b) You are perhaps aware that the elements $C o_{27}^{65}$ and $G a_{31}^{65}$ are unstable against β decay. Write down the appropriate $\beta^{ \pm}$decay chains through which these elements transform into a stable element.
(c) From the perspective of Q -values, prove/disprove that $C u_{29}^{64}$ is a $\beta^{ \pm}$emitter. Take neutrino mass to be zero.
$3+3+6]$
2. Answer the following questions supplemented with a few mathematical steps.
(a) The neutron and proton separation energies of O_{8}^{16} nucleus are denoted by $S_{n} \& S_{p}$, respectively. Using SEMF, determine the numerical value (in MeV) of $\left(S_{n}-S_{p}\right)$.
(b) Using SEMF determine the Q value (in MeV) for the β^{+}decay of C_{6}^{11} nucleus. Take neutrino mass $m_{\nu}=0$.
(c) In the context of α-decay through quantum tunneling (Gamow's theory), determine the maximum barrier height $V_{m}($ in MeV$)$ and barrier width b (in fm) encountered by the α particle for $\operatorname{Fr}_{87}^{212}$ nucleus. Take $Q_{\alpha} \simeq T_{\alpha}=$ 6.5 MeV.
3. Assume a hypothetical n-n bound state of spin-parity, $J^{P}=2^{+}$with the effective potential, $V_{e f f}(r)=-V_{0}+\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}$. Here, $V_{0}=38 \mathrm{MeV}$ is the minimum depth of the potential well to make $n-n$ barely bound.
(a) For this hypothetical state, estimate the numerical value of $V_{e f f}(r)$ (in MeV) at $\mathrm{r}=2 \mathrm{fm}$.
(b) For the operator $S_{12}=\left[3\left(\vec{\sigma}_{1} \cdot \hat{r}\right)\left(\vec{\sigma}_{2} \cdot \hat{r}\right)-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right]$, obtain the expectation value $<S_{12}>$ for the above hypothetical state. Here, $\sigma_{1,2}$ are the Pauli matrices of two neutrons, and \hat{r} is the unit vector along their separation vector.
$[5+5]$
4. Consider the $\mathrm{n}-\mathrm{p}$ scattering with energy E and wave vector $k=\sqrt{\frac{2 \mu E}{\hbar^{2}}}$. The scattering amplitude is given as, $f(\theta)=\frac{1}{k} \Sigma_{l}(2 l+1) e^{i \delta_{l}} \sin \delta_{l} P_{l}(\cos \theta)$.
(a) Using the above expression of $f(\theta)$, obtain the total $\mathrm{n}-\mathrm{p}$ scattering cross section σ (express as sum over all partial waves l). Obtain the relation between σ and the imaginary part of the forward scattering amplitude $f(\theta=0)$, i.e., relate σ with $\operatorname{Im} f(0)$.
(b) Now consider $E \rightarrow 0$ limit with the phase shift $\sin ^{2} \delta_{0}=E /\left(E+\left|E_{B}\right|\right)$. Suppose you (wrongly) believe that the measured value of $n-p$ cross section of magnitude 21 barn results from the triplet state scattering only. What do you then conclude about the numerical value of deuteron's binding energy $\left|E_{B}\right|$? Find the corresponding scattering length (in fm). (1 barn $=100 \mathrm{fm}^{2}$).

$$
[(5+2)+(5+2)]
$$

Symbols/Formulae/Data :
Standard/lecture class symbols have been used. For example, total angular momentum (J), Spin (S), Isospin (I), proton spin $\left(s_{p}\right)$, neutron spin $\left(s_{n}\right)$, Pauli matrices (σ), etc.
You can use : $\hbar c \simeq 200 \mathrm{MeV}-\mathrm{fm}, e^{2} /\left(4 \pi \epsilon_{0} \hbar c\right)=1 / 137 ; m_{n} c^{2}=939.565 \mathrm{MeV}, m_{p} c^{2}=938.272 \mathrm{MeV}, m_{e} c^{2}=0.51$ $\mathrm{MeV} ; \mu_{p}=2.793 \mu_{N} ; \mu_{n}=-1.913 \mu_{N}$; radius parameter $r_{0}=1.2 \mathrm{fm}$.
Semi-empirical formula for binding energy : $B=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{z^{2}}{A^{1 / 3}}-a_{a} \frac{(A-2 z)^{2}}{A}+\delta a_{p} A^{-3 / 4}$.
The values of various co-efficients (in MeV) : $a_{v}=16, a_{s}=17, a_{c}=0.69, a_{a}=25, a_{p}=35$.
Atomic masses of few elements : $M(64,27)=63.9358 u, M(64,28)=63.9280 u, M(64,29)=63.9298 u, M(64,30)=$ $63.9291 u, 1 u \equiv 931.5 \mathrm{MeV}$.
Algebra involving Pauli matrices : $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{a})=(\vec{a} \cdot \vec{b}) I+i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}$

