Physics Department; BITS-Pilani, Pilani Compre-Exam.; 2nd Semester 2022 - 2023

Nuclear & Particle Physics (PHY F343) Part - A (CB) ; Marks - 40 22 May 2023 ; (9:30 - 11:00) AM

Answer the following questions supplemented with a few mathematical/logical steps. Each question carries four marks. Don't expect step marking for PART - A. However, you must show the steps; otherwise, no marks will be awarded, even if the final answer is correct. Take suitable approximation if it's a must.

- 1. Using the semi-empirical mass formula calculate the numerical value of Q_{β} for β^+ -decay of N_7^{13} nucleus. Assume $m_{\nu} = 0$.
- 2. The Q-value in the decay $Po^{214} \longrightarrow U^{210} + \alpha$ is 5.27 MeV. Determine the numerical value of recoil energy T_U (in MeV) of the daughter nucleus.
- 3. Specify all allowed states of a two-neutron system with total angular momentum (i) J = 0 and (ii) J = 2. To specify the states, use the notation ${}^{2S+1}X_J$. Here X is the notation for the orbital angular momentum states, i.e., for l = 0, X = S; for l = 1, X = P and so on.
- 4. For n-p bound state, consider an operator $\hat{O} = \frac{(\vec{\sigma_n} \cdot \vec{r})(\vec{\sigma_p} \cdot \vec{r})}{r^2}$; r is neutron-proton separation distance. Determine the quantity $\int \hat{O} \ d\Omega$. Where $d\Omega = \sin \theta \ d\theta \ d\phi$.
- 5. Mention all possible types (Allowed/Forbidden, Fermi/GT etc.) of the following nuclear transitions. The spin-parity of the nucleus is given in the bracket. (i) $K^{40}(4^-) \rightarrow Ca^{40}(0^+)$ (ii) $He^6(0^+) \rightarrow Li^6(1^+)$.
- 6. In a shell model, assume the single particle energy level (without *l*-s coupling) as $E_{nl} = \hbar\omega(\Lambda + 3/2)$. Where $\Lambda = 2n + l 2$ is a non-negative integer with n = 1, 2, 3, ... and l = 0, 1, 2, ... If N_{Λ} denotes the maximum no of neutrons or protons that can be accommodated in the state " Λ ", obtain the expression of N_{Λ} in terms of Λ , and hence determine the value of N_5 .
- 7. Consider the reaction $p + p \longrightarrow p + p + p + \bar{p}$, where one of the initial protons is stationary (target), while the other (projectile) approaches the target. Find the *threshold energy* E_{th} (in MeV) of the projectile.
- 8. Starting from the flavor state $|\phi_f \rangle$ of Δ^{++} baryon, obtain the flavor state of Δ^+ baryon. Write down the color state (derivation is not required) of Λ^0 baryon.
- 9. Using quark model, obtain the expression for the magnetic moment μ of Δ^+ baryon for the spin state $|\chi(3/2, 3/2) >$. The magnetic moment should be expressed in terms of magnetic moment of the constituent quarks μ_u , μ_d , etc.
- 10. In view of conservation principles, prove/disprove the following statements. Each question carries one mark.
 - (a) $n \to p + \pi^-$ is an *allowed* decay process.
 - (b) $\rho^0 \rightarrow \pi^0 + \pi^0$ is a strong decay process.
 - (c) $\Lambda^0 \to K^0 + \pi^0$ is an *allowed weak* decay process.
 - (d) $p + \bar{p} \rightarrow \pi^+ + \pi^-$ is a *forbidden* reaction.

Symbols/Formulae/Data :

Standard/lecture class symbols have been used.

Example : Total angular momentum (J), Total spin (S), isospin (I), Pauli matrices (σ), etc. You can use : 1 u = 931.5 MeV ; $\hbar c \simeq 200$ MeV-fm, $e^2/(4\pi\epsilon_0\hbar c) = 1/137$; $m_nc^2 = 939.6$ MeV, $m_pc^2 = 938.3$ MeV, $m_ec^2 = 0.5$ MeV; radius parameter $r_0 = 1.2$ fm; 1 barn = 10^{-28} m² Binding energy : $B = a_v A - a_s A^{2/3} - a_c \frac{z^2}{A^{1/3}} - a_a \frac{(A-2z)^2}{A} + \delta a_p A^{-3/4}$. The values of various co-efficient (in MeV) : $a_v = 16$, $a_s = 17$, $a_c = 0.69$, $a_a = 25$, $a_p = 35$. Angular Momentum Algebra (in unit of \hbar) : $J_{\pm} | J, M > = \sqrt{J(J+1) - M(M \pm 1)} | J, M \pm 1 > 0$