Nuclear \& Particle Physics (PHY F343)
 Part - A (CB) ; Marks - 40
 22 May 2023 ; (9:30-11:00) AM

$\overline{\text { Answer the following questions supplemented with a few mathematical/logical steps. Each question carries four }}$ marks. Don't expect step marking for PART - A. However, you must show the steps; otherwise, no marks will be awarded, even if the final answer is correct. Take suitable approximation if it's a must.

1. Using the semi-empirical mass formula calculate the numerical value of Q_{β} for β^{+}-decay of N_{7}^{13} nucleus. Assume $m_{\nu}=0$.
2. The Q-value in the decay $P_{o}^{214} \longrightarrow U^{210}+\alpha$ is 5.27 MeV . Determine the numerical value of recoil energy T_{U} (in MeV) of the daughter nucleus.
3. Specify all allowed states of a two-neutron system with total angular momentum (i) $J=0$ and (ii) $J=2$. To specify the states, use the notation ${ }^{2 S+1} X_{J}$. Here X is the notation for the orbital angular momentum states, i.e., for $l=0, X=S$; for $l=1, X=P$ and so on.
4. For n-p bound state, consider an operator $\hat{O}=\frac{\left(\overrightarrow{\sigma_{n}} \cdot \vec{r}\right)\left(\overrightarrow{\sigma_{p}} \cdot \vec{r}\right)}{r^{2}} ; r$ is neutron-proton separation distance. Determine the quantity $\int \hat{O} d \Omega$. Where $d \Omega=\sin \theta d \theta d \phi$.
5. Mention all possible types (Allowed/Forbidden, Fermi/GT etc.) of the following nuclear transitions. The spin-parity of the nucleus is given in the bracket. (i) $K^{40}\left(4^{-}\right) \rightarrow C a^{40}\left(0^{+}\right)$(ii) $H e^{6}\left(0^{+}\right) \rightarrow L i^{6}\left(1^{+}\right)$.
6. In a shell model, assume the single particle energy level (without l-s coupling) as $E_{n l}=\hbar \omega(\Lambda+3 / 2)$. Where $\Lambda=2 n+l-2$ is a non-negative integer with $n=1,2,3, \ldots$ and $l=0,1,2, \ldots$. If N_{Λ} denotes the maximum no of neutrons or protons that can be accommodated in the state " Λ ", obtain the expression of N_{Λ} in terms of Λ, and hence determine the value of N_{5}.
7. Consider the reaction $p+p \longrightarrow p+p+p+\bar{p}$, where one of the initial protons is stationary (target), while the other (projectile) approaches the target. Find the threshold energy $E_{\text {th }}$ (in MeV) of the projectile.
8. Starting from the flavor state $\mid \phi_{f}>$ of Δ^{++}baryon, obtain the flavor state of Δ^{+}baryon. Write down the color state (derivation is not required) of Λ^{0} baryon.
9. Using quark model, obtain the expression for the magnetic moment μ of Δ^{+}baryon for the spin state $\mid \chi(3 / 2,3 / 2)>$. The magnetic moment should be expressed in terms of magnetic moment of the constituent quarks μ_{u}, μ_{d}, etc.
10. In view of conservation principles, prove/disprove the following statements. Each question carries one mark.
(a) $n \rightarrow p+\pi^{-}$is an allowed decay process.
(b) $\rho^{0} \rightarrow \pi^{0}+\pi^{0}$ is a strong decay process.
(c) $\Lambda^{0} \rightarrow K^{0}+\pi^{0}$ is an allowed weak decay process.
(d) $p+\bar{p} \rightarrow \pi^{+}+\pi^{-}$is a forbidden reaction.

Symbols/Formulae/Data :

Standard/lecture class symbols have been used.
Example : Total angular momentum (J), Total spin (S), isospin (I), Pauli matrices (σ), etc.
You can use : $1 \mathrm{u} \equiv 931.5 \mathrm{MeV} ; \hbar c \simeq 200 \mathrm{MeV}-\mathrm{fm}, e^{2} /\left(4 \pi \epsilon_{0} \hbar c\right)=1 / 137 ; m_{n} c^{2}=939.6 \mathrm{MeV}$,
$m_{p} c^{2}=938.3 \mathrm{MeV}, m_{e} c^{2}=0.5 \mathrm{MeV}$; radius parameter $r_{0}=1.2 \mathrm{fm} ; 1 \mathrm{barn}=10^{-28} \mathrm{~m}^{2}$
Binding energy : $B=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{z^{2}}{A^{1 / 3}}-a_{a} \frac{(A-2 z)^{2}}{A}+\delta a_{p} A^{-3 / 4}$.
The values of various co-efficient (in MeV) : $a_{v}=16, a_{s}=17, a_{c}=0.69, a_{a}=25, a_{p}=35$.
Angular Momentum Algebra (in unit of \hbar) : $J_{ \pm}|J, M>=\sqrt{J(J+1)-M(M \pm 1)}| J, M \pm 1>$

