PHYSICS DEPARTMENT; BITS-PILANI, PILANI

2ND SEMESTER 2022 - 2023

NUCLEAR & PARTICLE PHYSICS (PHY F343); Mid-Term Examination (Closed Book) Date & Time - 18/03/2023 ; 2:00 PM - 3:30 PM; Max. Marks - 60

Please attempt all parts of a question sequentially. Use the data appended below, if required.

- 1. Answer the following questions supplemented with clean and precise logical/mathematical steps. You will miss marks if you miss the important steps.
 - (a) n-n bound state may exist in superfluid neutron systems as n-n Cooper pairs. Prove/disprove that the symmetrization of the n-n state allows (i) L = 1, S = 1 and (ii) L = 2, S = 1.
 - (b) Calculate the approximate mass density of nuclear matter in g/cm^3 in a nucleus.
 - (c) Using atomic mass data, calculate the Q-value (in MeV) for β^+ decay of Cu_{29}^{64} nuclide. Take $m_{\nu} = 0$.
 - (d) The wave function describing n-p scattering can be written as, $\psi(r,\theta) = \psi_{inc} + \psi_{sc} = e^{ikz} + f(\theta)\frac{e^{ikr}}{r}$. If $f(\theta) = A\cos\theta$, (A is a constant factor), obtain the total cross-section σ .
 - (e) For s-wave (i.e., l = 0) n-p scattering, the total cross-section σ can be expressed as, $\sigma = \frac{4\pi\hbar^2}{m_p} \frac{1}{E+|E_B|}$. Where E and $|E_B|$ are the scattering energy and the binding energy of the n-p system, respectively. At zero scattering energy limit, the observed cross-section is 21 barn. If you believe the observed cross section can be explained only from the triplet state scattering, what value of binding energy E_B do you expect for the n-p triplet state?
 - (f) Consider the alpha decay chain, $A \to B \to C$ with decay constants of A and B are λ_1 and λ_2 , respectively. At any time t, the number of A and B are given by $N_1(t) = N_1(0)e^{-\lambda_1 t}$ and $N_2(t) = \frac{\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} \left[e^{-\lambda_1 t} - e^{-\lambda_2 t} \right]$. Obtain the expression of $t = t_m$ when N_2 becomes maximum. If the mean-life time of A and B are 4 hr and 8 hr, respectively, determine the numerical value of t_m .

[4+4+4+4+4+8]

- 2. Answer the following questions supplemented with the required mathematical steps.
 - (a) Assume the set of isobars with the mass number A = 51. Do the necessary algebra and determine the atomic number Z_0 of the most stable element (stable against β^{\pm} decay) among the isobars.
 - (b) The magnetic moment of deuteron (J = 1; S = 1) can be written as $\mu_d = (\mu_p + \mu_n) (\mu_p + \mu_n 1/2) < L_z >$. Where, $L_z = \frac{\vec{L} \cdot \vec{J}}{J^2}$. If P_0 and P_2 are the respective probabilities for the deuteron being in L = 0 and L = 2, obtain the expression of P_0 and P_2 in terms of μ_d, μ_p and μ_n . Show the algebra clearly. No need to put the numerical values of the magnetic moments.
 - (c) In α -decay, the decay probability is given as $T = e^{-G}$, with the Gamow Factor $G = a(\frac{8m_{\alpha}E_{\alpha}}{\hbar^2})^{1/2} \left[\frac{\pi}{2} 2(\frac{R}{a})^{1/2}\right]$. Where R is the radius of the daughter nucleus, and a is the distance corresponding to the classical turning point. Now, do a suitable modification of various parameters that appears in the Gamow factor and calculate (numerically) the decay probability $T = e^{-G}$ for the (hypothetical) decay $Fr_{87}^{200} \rightarrow Tl_{81}^{188} + C_6^{12}$. The Q-value of the decay is 28 MeV.

[8 + 12 + 12]

Symbols/Formulae/Data :

Standard/lecture class symbols have been used.

Example : Total angular momentum (J), spin (S), isospin (I), Pauli matrices (σ), etc.

You can use : 1 u = 931.5 MeV ; $\hbar c \simeq 200$ MeV-fm, $e^2/(4\pi\epsilon_0\hbar c) = 1/137$; $m_n c^2 = 939.565$ MeV, $m_p c^2 = 938.272$ MeV, $m_e c^2 = 0.51$ MeV; radius parameter $r_0 = 1.2$ fm; 1 barn = 10^{-28} m² Binding energy : $B = a_v A - a_s A^{2/3} - a_c \frac{z^2}{A^{1/3}} - a_a \frac{(A-2z)^2}{A} + \delta a_p A^{-3/4}$. The values of various co-efficients (in MeV) : $a_v = 16$, $a_s = 17$, $a_c = 0.69$, $a_a = 25$, $a_p = 35$. Atomic masses of few elements : M(64, 27) = 63.9358 u, M(64, 28) = 63.9280 u, M(64,29) = 63.9298 u, M(64,30) = 63.9291 u