1. Answer the following questions supplemented with clean and precise logical/mathematical steps. You will miss marks if you miss the important steps.
(a) n-n bound state may exist in superfluid neutron systems as $n-n$ Cooper pairs. Prove/disprove that the symmetrization of the n-n state allows (i) $L=1, S=1$ and (ii) $L=2, S=1$.
(b) Calculate the approximate mass density of nuclear matter in $\mathrm{g} / \mathrm{cm}^{3}$ in a nucleus.
(c) Using atomic mass data, calculate the Q -value (in MeV) for β^{+}decay of $C u_{29}^{64}$ nuclide. Take $m_{\nu}=0$.
(d) The wave function describing $n-p$ scattering can be written as, $\psi(r, \theta)=\psi_{i n c}+\psi_{s c}=e^{i k z}+f(\theta) \frac{e^{i k r}}{r}$. If $f(\theta)=A \cos \theta$, (A is a constant factor), obtain the total cross-section σ.
(e) For s-wave (i.e., $l=0$) n-p scattering, the total cross-section σ can be expressed as, $\sigma=\frac{4 \pi \hbar^{2}}{m_{p}} \frac{1}{E+\left|E_{B}\right|}$. Where E and $\left|E_{B}\right|$ are the scattering energy and the binding energy of the n-p system, respectively. At zero scattering energy limit, the observed cross-section is 21 barn. If you believe the observed cross section can be explained only from the triplet state scattering, what value of binding energy E_{B} do you expect for the n-p triplet state?
(f) Consider the alpha decay chain, $A \rightarrow B \rightarrow C$ with decay constants of A and B are λ_{1} and λ_{2}, respectively. At any time t, the number of A and B are given by $N_{1}(t)=N_{1}(0) e^{-\lambda_{1} t}$ and $N_{2}(t)=\frac{\lambda_{1} N_{1}(0)}{\lambda_{2}-\lambda_{1}}\left[e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right]$. Obtain the expression of $t=t_{m}$ when N_{2} becomes maximum. If the mean-life time of A and B are 4 hr and 8 $h r$, respectively, determine the numerical value of t_{m}.

$$
[4+4+4+4+4+8]
$$

2. Answer the following questions supplemented with the required mathematical steps.
(a) Assume the set of isobars with the mass number $A=51$. Do the necessary algebra and determine the atomic number Z_{0} of the most stable element (stable against $\beta^{ \pm}$decay) among the isobars.
(b) The magnetic moment of deuteron $(J=1 ; S=1)$ can be written as $\mu_{d}=\left(\mu_{p}+\mu_{n}\right)-\left(\mu_{p}+\mu_{n}-1 / 2\right)<L_{z}>$. Where, $L_{z}=\frac{\vec{L} . \vec{J}}{J^{2}}$. If P_{0} and P_{2} are the respective probabilities for the deuteron being in $L=0$ and $L=2$, obtain the expression of P_{0} and P_{2} in terms of μ_{d}, μ_{p} and μ_{n}. Show the algebra clearly. No need to put the numerical values of the magnetic moments.
(c) In α-decay, the decay probability is given as $T=e^{-G}$, with the Gamow Factor $G=a\left(\frac{8 m_{\alpha} E_{\alpha}}{\hbar^{2}}\right)^{1 / 2}\left[\frac{\pi}{2}-2\left(\frac{R}{a}\right)^{1 / 2}\right]$. Where R is the radius of the daughter nucleus, and a is the distance corresponding to the classical turning point. Now, do a suitable modification of various parameters that appears in the Gamow factor and calculate (numerically) the decay probability $T=e^{-G}$ for the (hypothetical) decay $F r_{87}^{200} \rightarrow T l_{81}^{188}+C_{6}^{12}$. The Q-value of the decay is 28 MeV .

$$
[8+12+12]
$$

Symbols/Formulae/Data :
Standard/lecture class symbols have been used.
Example : Total angular momentum (J), spin (S), isospin (I), Pauli matrices (σ), etc.
You can use : $1 \mathrm{u} \equiv 931.5 \mathrm{MeV} ; \hbar c \simeq 200 \mathrm{MeV}-\mathrm{fm}, e^{2} /\left(4 \pi \epsilon_{0} \hbar c\right)=1 / 137 ; m_{n} c^{2}=939.565 \mathrm{MeV}$, $m_{p} c^{2}=938.272 \mathrm{MeV}, m_{e} c^{2}=0.51 \mathrm{MeV}$; radius parameter $r_{0}=1.2 \mathrm{fm} ; 1$ barn $=10^{-28} \mathrm{~m}^{2}$
Binding energy : $B=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{z^{2}}{A^{1 / 3}}-a_{a} \frac{(A-2 z)^{2}}{A}+\delta a_{p} A^{-3 / 4}$.
The values of various co-efficients (in MeV) : $a_{v}=16, a_{s}=17, a_{c}=0.69, a_{a}=25, a_{p}=35$.
Atomic masses of few elements :
$M(64,27)=63.9358 u, M(64,28)=63.9280 u, M(64,29)=63.9298 u, M(64,30)=63.9291 u$

